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Abstract

We model dynamic competition between firms which improve their products through
learning from customer data, either by pooling different customers’ data (across-user
learning) or by learning from repeated usage of the same customers (within-user learn-
ing). We show how a firm’s competitive advantage is affected by the shape of firms’
learning functions, asymmetries between their learning functions, the extent of data
accumulation, and customer beliefs. We also explore how public policies towards data
sharing, user privacy and killer data acquisitions affect competitive dynamics and ef-
ficiency. Finally, we show conditions under which a consumer coordination problem
arises endogenously from data-enabled learning.
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1 Introduction

In recent years, much attention has been focused on the role data can play in providing

incumbent firms with a competitive advantage. Digitization, connectivity to cloud-based

infrastructures, together with cheaper storage and more effective use of data (i.e. improve-

ments in machine learning algorithms), have made it possible for firms in many industries

to translate learning from their customer data into rapid improvements in their products on
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a scale that has not been seen before. And with better products, these firms can attract

more customers (or more usage from existing customers), and therefore obtain more data,

potentially creating a self-reinforcing cycle that can make it difficult for any new entrant to

compete. We call this self-reinforcing cycle “data-enabled learning”.1

There are a plethora of products and services that leverage data-enabled learning. Some

work purely by leveraging data across different users, whereas others personalize the learning

at the individual level. As an example of the former, consider Grammarly. This well-known

cloud-based service suggests spelling, grammar, tone, style and word choice improvements

in exchange for a monthly subscription fee. As users make corrections to the suggestions

offered by Grammarly, its language experts and artificial intelligence can use this feedback to

continue to improve its future recommendations for all users. Other text processing applica-

tions such as chatbots (LivePerson), document management (Luminance) and productivity

tools (x.ai) work in a similar way, as do computer vision applications such as driver assis-

tance (Mobileye), autonomous vehicle systems (Cruise), skin cancer detection (SkinVision),

farm monitoring (Prospera), home security (Deep Sentinel) and airport screening (SeeTrue),

and speech recognition applications such as dictation software (Dragon), translation services

(Unbabel) and virtual assistants (Amelia).

In contrast to these applications based on across-user learning, consider Fitbit’s premium

service, which provides users with personalized advice on health, sleep and fitness based on

data collected by their Fitbit device. As customers use their Fitbit device more, the system

is able to provide them with better and more helpful advice, which means users tend to

prefer it to any new alternative device. And of course, many applications work by combining

both across-user learning and within-user learning, such as paid services that are built on

recommendation systems like those offered by Calm, Netflix, Spotify, StitchFix and Tinder.

Data-enabled learning would seem to give incumbent firms a competitive advantage. But

how strong is this advantage and how does it differ from that obtained from more traditional

mechanisms, such as (i) learning-by-doing, which allows a firm to lower its costs as it produces

(and sells) more, thereby being able to offer a lower price and attract more sales, and (ii)

standard network effects, which make a firm more valuable to consumers as it attracts more

consumers, thereby attracting even more consumers and offering even higher value?

To address these questions, and determine the drivers of competitive advantage with data-

enabled learning, we develop a theory of dynamic competition in which firms can improve

their products via data gleaned from their customers. The theory is based on Bertrand

1Some practitioners have called this phenomenon “data network effects”. Our use of “data-enabled
learning” is intended to be more general because, as discussed below, the phenomenon need not involve any
network effect (for example, if the learning is specific to each customer).
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competition between two infinitely lived firms, which can differ in the amount of their prior

learning as well as in the shape of their respective learning functions. We allow firms to set

prices to compete for consumers every period, taking into account how attracting consumers

(and therefore more data) increases the value they can offer to consumers in subsequent

periods. An important feature of our framework is its ability to handle asymmetric learning

functions. This generality is achieved by simplifying the model in another dimension — there

is no uncertainty determining which firm has an intrinsic advantage in every given period,

which means the market always has a winner-takes-all property, with the same firm winning

in every period.

As a baseline, we consider the case with across-user learning only (Section 3), in which

the two firms only learn based on the total number of consumers they served in the past. Be-

cause consumers’ willingness-to-pay increases over time with more users when prices remain

unchanged, there is a type of dynamic network effect at play. This provides one distinction

from traditional learning-by-doing settings, where consumers benefit only via lower prices.

A more substantive distinction arises when we allow firms to learn and improve their prod-

ucts while their customers are still consuming them. This is often the case with cloud-based

products, but was not possible with traditional products (e.g. physical goods, packaged

software). When the product improves while it is still being consumed, consumers need to

form expectations over how many other consumers will purchase the same product in order

to determine the value they will get from the product, thereby creating a role for consumer

beliefs.

We then consider the case of within-user learning only (Section 4), in which any given

consumer’s willingness-to-pay for a given firm’s product only depends on how many times

the firm has served that particular consumer in the past. This highlights another fundamen-

tal difference between data-enabled learning and traditional learning-by-doing mechanisms,

which is the role of customization: firms can often improve their products for each individual

customer based on that customer’s particular usage experience. Within-user learning implies

the more a customer uses a firm’s product, the greater is the effective cost of switching to

the rival’s product. Such data-enabled learning therefore creates a switching cost that grows

over time, but not any type of network effect.

In these baseline models, we show that despite the fact that sometimes both the winning

firm and the losing firm price below cost to consumers, the competitive outcome coincides

with the socially optimal outcome in terms of which firm wins in each period.2 The condition

determining which firm will win is the same regardless of whether we assume pure across-

2The only exception to this occurs with across-user learning when products can improve while they are
still being consumed, so there is a role for consumer beliefs to distort the equilibrium outcomes.
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user learning or pure within-user learning. However, the profits of the winning firm are

different: namely, the winning firm makes strictly higher profits when learning is purely

across users relative to the case when it is purely within users. Fundamentally, this is

because within-user learning creates an increasing switching costs, so each forward-looking

individual consumer takes into account that they would benefit if the losing firm had a

stronger competitive position in the future, which in turn makes the winning firm have to

price more competitively. We also explain how various factors, such as how far each firm is

along its learning curve and the nature of the learning curve, affect the condition for either

firm to win.

In Section 5 we show how combining the two types of learning (across users and within

users) can make consumers’ beliefs matter for the equilibrium outcome. With myopic con-

sumers we show things remain equivalent to the case of pure across-user learning, in which

consumer beliefs don’t matter. However, once we allow for forward-looking consumers, be-

liefs can matter provided the value of across-user learning is sufficiently large relative to the

value of within-user learning.

A key implication of our analysis is that providing the losing firm with more data generally

increases consumer surplus. This might suggest a policy that forces winning firms to share

the data obtained with their rivals would be good for consumers. We use our dynamic

framework to explore how data sharing works: we find that it increases consumer surplus

when one firm is sufficiently far ahead of the other by making the laggard more competitive,

but it decreases consumer surplus when the firms are sufficiently evenly matched by making

firms compete less aggressively, which in our model means subsidizing consumers less. We

also use our model to highlight an unintended consequence of privacy policies. If such policies

reduce the rate at which firms can extract useful data from consumers, they will tend to

increase the incumbent’s competitive advantage, reflecting that the entrant has more scope

for new learning and so is affected more by such a policy. Finally, our baseline efficiency result

no longer necessarily holds when the firms can acquire data directly (e.g. from a third party)

rather than via attracting more consumers. Indeed, we show that if one firm has already

reached its maximum learning threshold, that firm will acquire the available data too often

relative to what is socially efficient. Thus, the theory predicts killer data acquisitions, in

which the incumbent will acquire data even though it has no use for it, because it stands to

gain more by denying the rival access to the data than the rival would obtain by catching

up.
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2 Related literature

Our article combines aspects from three large and established literatures. First, it relates

to works that provide theoretical models of competition with learning-by-doing (Fudenberg

and Tirole, 1983; Dasgupta and Stiglitz, 1988; Salant, 1990; Cabral and Riordan, 1994;

Besanko et al., 2010; and Besanko et al., 2014 and 2019). Our treatment of pure across-user

learning (in the case without within-period learning), in which learning increases consumers’

willingness to pay in subsequent periods, can be viewed as isomorphic to the decreases in

firms’ costs arising under traditional learning-by-doing models. In this sense, the baseline

model with pure across-user learning is close to that in the classic article of Cabral and

Riordan (1994), and the articles by Besanko et al., 2010, and Besanko et al., 2014 and

2019 that build on their framework. Relative to these articles, our framework is simpler by

assuming away uncertainty (i.e. firm-specific shocks to consumer valuations). Without a

stochastic element determining which firm has an intrinsic advantage in every period, our

model is less useful in terms of predicting the evolution of market shares in an industry.

On the other hand, we contribute to the learning-by-doing literature with our focus on

asymmetric learning functions. This creates the possibility that a firm that currently has a

smaller stock of data but access to a superior learning technology can have a competitive

advantage that enables it to win current and future sales.

A benefit of our model of learning is we can explicitly solve for prices and value functions

in every state for arbitrary learning functions, which is what allows us to obtain a wide range

of new results, including the implications of learning for consumer surplus, and comparative

statics in the shape of the firms’ respective learning curves and in their respective positions on

those curves. And more fundamentally, we apply the framework to study questions that do

not naturally arise in learning-by-doing settings, specifically policy questions regarding the

implications of data sharing, tighter customer privacy, and data acquisitions. Furthermore,

the within-user learning version of our model is entirely new, as is the role of switching

costs in that setting. Finally, a further novelty of data-enabled learning relative to learning-

by-doing is the possibility for consumer coordination problems to arise, such as when we

combine across-user learning with within-period learning or within-user learning.

Second, our article relates to the substantial literature on network effects. From this

literature we borrow the modelling of consumer “beliefs” to select equilibria when consumers

play coordination games (Katz and Shapiro, 1986, and Caillaud and Jullien, 2001). At a high

level, our model with across-user and within-period learning is related to dynamic models

with network effects (e.g. Mitchell and Skrzypacz, 2006, Cabral, 2011, Biglaiser and Cremer

2020, Halaburda et al., 2020), as the combination of these two features works in the same
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way as exogenous network effects within a period. However, a key difference is that in our

setting with learning, willingness-to-pay depends not only on the current stock of consumers,

as it would in network effects models, but also on past consumers even if they are no longer

consuming from the firm.

Third, our article relates to IO models of switching costs, such as the classic articles of

Klemperer (1987) and Beggs and Klemperer (1992). As noted in the introduction, within-

user learning creates a switching cost that grows the longer a consumer is with a particular

firm. This contrasts with the standard assumption in the literature that switching costs are

constant. Nilssen (1992) allows that switching costs are higher when switching to a new

firm as opposed to a firm that has been previously tried, but doesn’t allow switching costs

to continue to increase in the number of periods a consumer has purchased from a given

firm. To the best of our knowledge, this feature has not previously been considered in the

switching cost literature even though it seems relevant more generally.

Finally, there is a rapidly emerging literature on the role and implications of data in

the economy. One branch of this literature (see Acemoglu et al., 2022, Bergemann et al.,

2022, Choi et al., 2019, and Ichihashi, 2020 and 2021) studies the negative implications of

firms collecting consumer data when that data can be used in ways that harm consumer

privacy (e.g. selling it to third parties), thus giving rise to the possibility of excessive data

collection. In contrast, and consistent with our motivating examples, the firms collecting

data from their customers in our model use that data only to improve their own products

for consumers. Articles that also focus on data-enabled learning include Farboodi et al.

(2019), who model the industry dynamics that arises when data helps firms choose the best

production technique and so higher quality products, and Prufer and Schottmüller (2022),

who model a dynamic feedback loop in which a firm’s current cost of investing in quality

is decreasing in the firm’s previous period sales, and greater investment in quality leads to

higher demand in the current period. Both abstract from strategic price setting by firms

and explicit modelling of the decisions of forward looking consumers. Biglaiser et al. (2019)

provides a high-level discussion of the different ways firms can enjoy incumbency advantages,

including access to more data: they note that across-user learning and within-user learning

are two distinct ways in which data generates a competitive advantage for incumbents. De

Cornière and Taylor (2021) also study the effect of data on competition but focus on showing

how different uses of data (including improving a firm’s product, but also ad targeting and

price discrimination) determine whether data is pro- or anti-competitive. Although their

framework is much more general in other ways, they don’t analyze a fully dynamic setting in

which data learning can accumulate. Finally, Schaefer and Sapi (2022) investigate how data

drives the quality of internet search results, providing evidence that the quality of search
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results improve with more data on previous searches, and that personalized information is

particularly valuable.

3 Across-user learning

In this section we focus on across-user learning—each firm improves the product for

each consumer based on what it learns from the usage of all its consumers. The learning

technology we consider has the general property that the value to consumers of a given

firm’s product in a period is an increasing function of the measure of consumers who have

purchased the product previously (past consumers) from the same firm. We will refer to

the model described below as our baseline setting because it turns out that much of the

model setup and analysis, as well as many of the results in this section, carry over (with

suitable adjustments) to the versions where we allow for within-period learning (at the end

of this section), and within-user learning, either by itself (Section 4), or in combination with

across-user learning (Section 5).

Two firms, which we refer to as the incumbent I and the entrant E, compete over infinitely

many periods. Both firms face a marginal cost of production equal to c and compete in prices.

We assume consumers have unit demands in each period, which they can fulfill either from I

or E. Although firms charge positive prices in all of our motivating examples, we can allow for

the possibility of negative prices by reinterpreting the price as some valuable service that the

firm offers consumers in exchange for their data and which is costly for the firm to provide.

The (common) one period ahead discount factor is denoted δ, and satisfies 0 < δ < 1. We

normalize the measure of consumers in each period to one, and so the number of periods

that a firm has previously won also represents the total measure of consumers it can learn

from. In this formulation of across-user learning, there is no distinction between consumers

who are purchasing again (repeat consumers) vs. entirely new consumers. Thus, our setting

in this section is compatible with two interpretations:

� Consumers live for one period only. New consumers in a period make a single buying

decision and then exit.

� The same consumers are active and make purchasing decisions in every period, i.e.

they are infinitely lived and forward looking, but there is no cost for each of these

individual consumers to switch from one firm to the other across periods.

An important implication of consumers being atomistic is that even if consumers are of

the second type above, they do not need to consider the impact of their purchase decision
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on the pricing game or the options they will face in subsequent periods. Thus, consumers’

optimal choices can be made by comparing the surplus offered by each firm in the current

period only, which is why the same results would arise if we had assumed long-lived consumers

were myopic instead. Later, when we introduce within-user learning, this will no longer be

true.

Consumers are identical in their preferences for the two firms.3 Specifically, the stan-

dalone value of firm i’s product (or service) is denoted si, where i ∈ {I, E}. This value is

augmented by learning. In any period, firms are asymmetric Bertrand competitors, so each

firm will either sell to all consumers (measure one) or none. If firm i has sold in Ni periods

in the past, then the value current consumers obtain from firm i’s product is si + fi (Ni),

where fi is firm i’s learning function. We assume that firm i reaches its maximum threshold

of learning after selling in N i periods, i.e. there exists N i ≥ 1 such that fi (Ni) = fi
(
N i

)
for all Ni ≥ N i.

This specification captures that firms learn more as they obtain more consumer data,

and this allows them to increase the value of the product they offer, but only up to a point,

i.e. learning is bounded. Later in this section we will show how our results extend to

handle unbounded learning functions. The only requirements on fi are that it is defined for

all non-negative real values of its argument, is everywhere weakly increasing, and without

loss of generality, strictly increasing in the last step to reach its maximum threshold (i.e.

fi(N i) > fi(N i − 1)). In particular, fi need not be a continuous function. We normalize

fi (0) = 0. Thus, at any point in time there are potentially three sources of asymmetry

between firms: (i) differences in standalone value (sI 6= sE), (ii) differences in the learning

curve (fI 6= fE and/or N I 6= NE), and (iii) differences in how far along each firm is on its

learning curve in the current period (NI 6= NE).4

Consumers and firms have perfect and complete information. Our focus is on Markovian

strategies and a Markov-perfect equilibrium (MPE). Among MPEs, we rule out equilibria

which are supported by the losing firm pricing in such a way that its value would be negative

if it instead won consumers at the prices charged. When we refer to a unique MPE we mean

the MPE is unique after eliminating MPEs that involve such weakly dominated strategies.

Finally, we use the convention that E wins in case consumers are indifferent when both firms

price at the lowest level they would still be willing to sell at.

3This is distinct from the data each consumer provides to firms, which could still be different across
consumers.

4In Cabral and Riordan (1994), there are no differences in learning curves across firms, but rather, they
allow for horizontal differentiation via firm-specific shocks to consumer valuations. If we introduced the
above asymmetries in standalone values and learning curves into their framework, and take the limit as the
variance of their stochastic term goes to zero, we would obtain a model that is isomorphic to ours.
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An implicit assumption in our setup is that a firm will continue to compete even if in

equilibrium its value is zero. This is consistent with our assumption that firms do not face

any fixed cost to remain in operation and ensures firms always face some form of competition.

There are many realistic ways to extend our model such that the losing firm makes positive

expected profits in every period and therefore remains active provided fixed operating costs

are not too large. In Online Appendix A, we present the details for two such extensions, as

well as explaining what happens when the losing firm exits.

The relevant state at the start of any period is defined by (NI , NE). The corresponding

value functions for I and E (i.e. the present discounted values (PDVs) of future profit flows

starting with the current period when firms follow their equilibrium pricing strategies in

every period) are denoted by V I(NI , NE) and V E(NI , NE). Consider firms starting from

the state (N I , NE), so both firms have reached their respective learning thresholds.5 Then

I offers sI + fI(N I) to consumers in every period and E offers sE + fE(NE) to consumers in

every period. Given the resulting asymmetric Bertrand competition, and taking into account

that the competitive situation will be the same in every subsequent period, E wins every

period starting with the current one if and only if sE +fE(NE) ≥ sI +fI(N I). Furthermore,

for each firm i ∈ {I, E} and its rival j ∈ {I, E} with j 6= i, we must have

V i(N I , NE) =
1

1− δ
max

{
si − sj + fi(N i)− fj(N j), 0

}
. (1)

When at least one of the firms has not yet reached its learning threshold, in order to win

the current period, each firm will be willing to offer a subsidy equal to the difference in the

discounted value of its future profits if it were to win the current period and its future profits

if it were to lose the current period. Taking into account the maximum subsidy each firm

is willing to offer in order to win, we can work out which firm will win in each period and

its corresponding value function, working backwards from (NI , NE) = (N I , NE). Using this

approach, we show that for any state (NI , NE), there is a cutoff level of sE − sI above which

E wins and below which I wins. We use two-dimensional backwards induction in (NI , NE)

to characterize this cutoff level (unless stated otherwise, all proofs are in the Appendix).6

Proposition 1. Suppose I has previously sold to NI ≥ 0 consumers and E has previously

sold to NE ≥ 0 consumers. There exists a unique MPE in which E wins in all periods if and

5Due to the learning thresholds of the two firms, any state (NI , NE) with NI ≥ N I is equivalent to the
state (N I , NE) and any state (NI , NE) with NE ≥ NE is equivalent to the state (NI , NE).

6The firms’ corresponding value functions are given in the proof of Proposition 1.
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only if sE − sI ≥ ∆(NI , NE), and I wins in all periods otherwise, where

∆(NI , NE) = (1− δ)

(
∞∑
j=0

δjfI(NI + j)−
∞∑
j=0

δjfE(NE + j)

)
. (2)

This equilibrium continues to exist in the limit as N I →∞ and NE →∞ (i.e. such that the

learning functions continue to increase forever) provided there exists some power function

which the learning curves lie below in the limit.

Proposition 1 characterizes I’s competitive advantage, which is captured by ∆(NI , NE).7

The higher is ∆(NI , NE), the higher is the level of sE − sI required for E to win. After

dividing through by 1− δ, the expression ∆(NI , NE) is equal to the difference in the PDV of

gross surplus generated from learning across the two firms when comparing the paths where

each firm wins in every period from the current period onwards.

Clearly ∆(NI , NE) is increasing in NI and decreasing in NE. This captures that along the

equilibrium path, if a firm wins in the current period, because it benefits from an additional

learning period, ∆(NI , NE) shifts such that the same firm will continue to win in each

subsequent period, and indeed does so even more easily. This last feature is reminiscent of

the “increasing increasing dominance” property explored by Cabral and Riordan (1994). Yet

in our setting, E may win and so move ahead of I even though it is currently behind (e.g.

NE < NI). This could be because it learns more despite having less data (so fE (NE) >

fI (NI)), or even if fE (NE) < fI (NI), this could be because its learning curve is steeper

and/or is increasing for longer, and so ultimately generates more value from getting ahead.

For example, inspecting (2) and recalling that fi (Ni) = fi
(
N i

)
for all Ni ≥ N i, one can

infer that if fE(NE) > fI(N I), then for δ sufficiently close to 1 we have ∆(NI , NE) < 0, so

no matter how far behind it is today, E has an overall competitive advantage.

As noted in Proposition 1, the equilibrium we have characterized still exists in the limit

as N I → ∞ and NE → ∞. This allows us to capture any unbounded learning function

provided it does not increase faster than some power function.8 Thus, for instance, if the

learning functions are linear without bounds (i.e. fi (Ni) = θiNi), Proposition 1 implies

∆(NI , NE) = θI

(
NI +

δ

1− δ

)
− θE

(
NE +

δ

1− δ

)
.

Our framework allows us to derive comparative statics taking into account asymmetries

7Note that ∆(NI , NE) = ∆(N I , NE) for all NI ≥ N I and ∆(NI , NE) = ∆(NI , NE) for all NE ≥ NE .
8By the same logic underlying this result, all our characterizations of ∆ (NI , NE), V I(NI , NE) and

V E(NI , NE) in this article also extend to this unbounded case, by taking the limit as N I →∞ and NE →∞.
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across the firms’ learning functions. From (2), I’s competitive advantage is increasing in the

maximum threshold for I’s learning N I , decreasing in the maximum threshold for E’s learning

NE, increasing in anything that increases I’s learning function fI (e.g. an improvement in

I’s learning technology) and decreasing in anything that increases E’s learning function

fE. Furthermore, a common technological improvement that improves both firms’ learning

functions by the same multiplicative factor θ > 1 enhances the competitive advantage of the

firm that has an advantage to begin with (i.e. I if ∆(NI , NE) > 0 and E if ∆(NI , NE) < 0).

Thus, for instance, if both firms have access to the same learning technology, and I has

more data to start with (NI > NE), its competitive advantage will increase if their common

learning function increases by the same multiplicative factor θ > 1. This reflects that data

and a multiplicative technological improvement are inherently complementary. This is also

why if I has a proportionally better learning technology (i.e. fI (Nk) = θfE (Nk) for any

Nk, with θ > 1) and both firms start with the same amount of data (NI = NE = N),

then increasing that initial amount of data increases I’s competitive advantage. We derive

additional comparative static results by putting more structure on the learning functions in

the next subsection.

An interesting implication of the proof of Proposition 1 is that the losing firm may be still

willing to offer a subsidy to consumers provided the winning firm’s competitive advantage is

not too large. Characterizing this subsidy turns out to play a key role in our comparative

statics exercises and analysis of policies.

Corollary 1. Suppose I has previously sold to NI ≥ 0 consumers and E has previously sold

to NE ≥ 0 consumers. In the unique MPE,

� if ∆(NI , NE + 1) ≤ sE − sI < ∆(NI , NE), then I wins and E subsidizes

� if ∆ (NI , NE) ≤ sE − sI < ∆(NI + 1, NE), then E wins and I subsidizes

� otherwise, the losing firm does not subsidize.

The willingness of the losing firm to offer a subsidy reflects that in the off-equilibrium

situation that the losing firm actually wins the current period, it expects to have a positive

value (via some future profits). This implies the winning firm’s competitive advantage will

be limited by the losing firm’s willingness to subsidize consumers in such cases. Taking the

first case in Corollary 1, it can be divided into two cases. If ∆(NI , NE + 1) ≤ sE − sI <

min
{

∆
(
N I , NE + 1

)
,∆ (NI , NE)

}
, then I wins and E subsidizes for a finite number of

periods.9 Meanwhile, if ∆(N I , NE +1) ≤ sE−sI < ∆(NI , NE), then I wins and E subsidizes

9Specifically, E subsidizes for the first k periods, where k ≤ N I −NI is uniquely defined by the inequality
∆(NI + k,NE + 1) < sE − sI < ∆(NI + k + 1, NE + 1).

11



forever, i.e. even after I reaches its learning threshold. And symmetrically when E wins

and I subsidizes. Moreover, Corollary 1 does not rule out the winning firm also subsidizing

consumers. Specifically, if fI (NI) − fE (NE) < sE − sI < ∆(NI , NE), then I wins and

subsidizes in the current period (and symmetrically for E).

In our baseline model we ignored data depreciation to keep things tractable. To incor-

porate data depreciation, in Online Appendix B, we assume instead that both firms lose a

fixed amount of data through depreciation each period, subject to the constraint that the

stock of data of each firm cannot fall below zero.10 For instance, if firm I wins period 1, then

the stocks of data at the beginning of period 2 are max {NE − ρ, 0} and NI − ρ + 1, where

0 ≤ ρ ≤ 1 is the fixed amount of data depreciation in each period. With this setup, we show

that the threshold for E to win (i.e. I’s competitive advantage) becomes

∆d (NI , NE) = (1− δ)2
∞∑
j=0

j∑
k=0

δj (fI (max {NI − jρ+ k, 0})− fE (max {NE − jρ+ k, 0})) .

It is easily verified that ∆d (NI , NE) converges to ∆ (NI , NE) defined in (2) when ρ → 0.

When ρ > 0, the analysis is more complex due to the double summation, but the model

dynamics and results remain similar.

3.1 Determinants of competitive advantage

We are interested in the effects on a firm’s competitive advantage of changes in technology

that increase the amount the firms can learn from data (e.g. improvements in algorithms)

and of shocks that provide firms with more data (e.g. getting access to a new data source

that moves them along their learning curves), while taking into account that the incumbent

has more data than the entrant.

To explore these types of questions, in this section we put some more structure on the

learning functions. Formally, we assume when firm i has sold to Ni past consumers, the value

it offers from learning is fi (Ni) = θi max
{

min
{
Ni, N i

}
−N i, 0

}
, where N i and N i are the

minimum and maximum thresholds for firm i and 0 ≤ N i ≤ N i. This formulation means

that the learning curves are S-shaped (see figure 1): the value is zero until some minimum

amount of data is collected, after which it increases at a constant rate until learning has

been exhausted. It includes as special cases linear learning functions up to the threshold

(N i = 0), and step learning functions (N i −N i = 1 and N i > 0).

10The difficulty with depreciation proportional to the stock of data in our setting is that the stocks of data
after any given number of periods would not just depend on how many periods each firm has won, but also
on the sequence of wins/losses for each firm.

12

https://app.scholarsite.io/s/bbdeca


N i N i Ni

fi(Ni)

Figure 1

Plugging these functions into (2) leads to the following expression of the cutoff for E to

win:

∆(NI , NE) = θI

(
max {NI −N I , 0}+

δmax{NI−NI ,0}+1 − δNI−NI+1

1− δ

)
(3)

−θE

(
max {NE −NE, 0}+

δmax{NE−NE ,0}+1 − δNE−NE+1

1− δ

)
,

for all 0 ≤ NI ≤ N I and 0 ≤ NE ≤ NE. Using this cutoff we are able to derive the following

comparative statics.

Proposition 2. Suppose both firms have the same S-shaped learning function with rate of

learning θ and thresholds N and N , and assume NE < NI ≤ N . Then (i) increasing the value

of new data by a multiplicative factor greater than one increases I’s competitive advantage

when NE < NI ≤ N and decreases I’s competitive advantage when N < NE < NI ≤ N ; (ii)

increasing both NI and NE by k ≥ 1 increases I’s competitive advantage when NI + k ≤ N

and decreases I’s competitive advantage when NE > N and NI + k ≤ N .

For (i), increasing the value of new data (relative to the starting point (NI , NE)) by

a multiplicative factor α > 1 means the learning function for firm i ∈ {I, E} changes

from fi (N
′
i) = θi max

{
min

{
N ′i , N

}
−N, 0

}
to f̃i (N

′
i) = fi (Ni) + α (fi (N

′
i)− fi (Ni)) for

all N ′i ≥ Ni. When the firms have yet to move onto the increasing part of the learning

curve, increasing the value obtained from new data in a multiplicative way means it only

helps the firms after they start obtaining positive value. As such, it is equivalent to the

general multiplicative improvement in learning technology that we discussed earlier. The

improvement in technology always benefits the winning firm, which is the incumbent here.

Things are different once both firms are already on the increasing part of the learning curve.

13



Then making new data more valuable means old data is relatively less valuable, which

reduces I’s competitive advantage, because the latter is based on the value of its old data

(NI > NE). Put differently, E, which has more scope for new learning, benefits more from

the improvement in learning with respect to new data.

The first part of (ii) can be interpreted as considering what happens when both firms

discover some new data, so that both firms find themselves closer to where they can start

to offer positive value from learning. This discovery increases I’s competitive advantage.

To understand this result note that if firms are yet to move onto the increasing part of the

learning curve, requiring fewer periods of customer data to reach the increasing part brings

forward (i.e. discounts less) the advantage that I obtains from being closer to the threshold,

thereby increasing its competitive advantage. The effect reverses when both firms are already

on the increasing part of the learning curve (second part of (ii)). Here, a reduction in the

number of learning periods both firms need to reach the maximum threshold decreases the

number of periods over which I can enjoy its learning advantage, so helps E.

3.2 Welfare analysis

A common counterfactual used to assess the efficiency of the entrant making sales is to

think about who would win if the entrant had access to the same data as the incumbent.

Obviously, in a dynamic setting, it also matters how much value consumers get along the

path to such an outcome, which is why the correct approach involves looking at the PDV of

gross surplus along respective winning paths starting from the current data that each firm

has. Specifically, if I wins in every period, the value created is sI−c
1−δ +

∑∞
j=0 δ

jfI(NI + j),

whereas if E wins in every period, the value created is sE−c
1−δ +

∑∞
j=0 δ

jfE(NE + j). The

socially optimal cutoff is then the level of sI − sE for which these two expressions are equal,

which is easily seen to exactly correspond to the equilibrium cutoff ∆(NI , NE) from (2). We

have thus proven the following result.

Proposition 3. The unique MPE outcome characterized in Proposition 1 is socially optimal.

The logic behind this efficiency result is actually quite subtle. To understand this, con-

sider first a two-period model, in which the firms start with (NI , NE) respectively and there

is only one opportunity to learn, arising from the opportunity to win consumers in the first

period. To determine which firm wins in the first period, note that the maximum surpus

that each firm can afford to offer consumers in the first period is its period 1 surplus plus

the discounted value of the additional surplus that it offers in period 2 relative to the other

14



firm. Thus, E wins in period 1 iff

sE + fE (NE) + δ (sE + fE (NE + 1)− sI − fI (NI))

≥ sI + fI (NI) + δ (sI + fI (NI + 1)− sE − fE (NE)) .

By contrast, the efficient condition for E to win is simply

sE + fE (NE) + δ (sE + fE (NE + 1))

≥ sI + fI (NI) + δ (sI + fI (NI + 1)) .

Comparing the two inequalities above, the competitive outcome is inefficient due to the

double-counting of the respective first-period surpluses, sE + fE (NE) and sI + fI (NI). This

means that despite the simple Bertrand nature of competition, it is not necessarily the firm

that offers the largest PDV of surplus that wins in the first period (which is what simple

intuition would suggest). In other words, the condition for E to win places too much weight

on first-period surpluses relative to second period surpluses, because the first-period surplus

offered by the losing firm also reduces the profit extracted by the winning firm in period 2.

This inefficiency will be present in the setting with any finite number of periods T ≥ 2.

Indeed, in Online Appendix C we provide the condition for E to win for all T ≥ 2 and show

that this condition is generally inefficient, with too much weight placed on earlier periods

and too little weight placed on later periods. Finally, we also show that the condition for E

to win converges to the efficient condition given in Proposition 1 when T tends to infinity.

The reason that the inefficiency fades away as T goes to infinity is that the same type

of double-counting spreads out across all periods, in the limit becoming proportional to the

socially efficient way of accounting for the surplus offered by each firm in each period along

its winning path.

The PDV of consumer surplus is determined by the surplus offered by the losing firm in

each period along the equilibrium path (given the same firm wins in all periods). As a result,

learning by the winning firm as it sells to additional consumers each period makes consumers

weakly worse off. To see this note first that if the losing firm has already stopped offering a

subsidy, then learning by the winner does not change the PDV of consumer surplus offered

by the loser, which in case firm j is the losing firm is fixed at

CS (NI , NE) =
sj − c+ fj(Nj)

1− δ
. (4)

In case the losing firm currently offers a subsidy, the PDV of consumer surplus can be

determined by the PDV of total surplus less the PDV of the winning firm’s profit stream,
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i.e.

CS (NI , NE) =
si − c
1− δ

+
∞∑
k=0

δkfi(Ni + k)−
(
si − sj + ∆(NI , NE)

(1− δ)2

)
(5)

in case firm i is the winning firm and firm j is the losing firm. It is straightforward to check

that in this case CS (NI , NE) is decreasing in Ni, so consumer surplus is strictly decreasing

as the winning firm learns more along the equilibrium path. This reflects that the losing

firm’s subsidy gets smaller over time as the winning firm’s learning advantage continues to

increase along the equilibrium path.

An inspection of the PDV of payoffs for firms from the proof of Proposition 1, and of

consumers in (4) and (5), reveals that the consumers’ and winning firm’s payoffs move in

opposite directions with respect to the key drivers of competitive advantage. More formally,

we have the following proposition.

Proposition 4. When firm i wins and firm j loses, consumer surplus is increasing in

sj and fj (Nj), and weakly decreasing in si and fi (Ni + k) for all k ≥ 0. Meanwhile, the

winning firm i’s profits are decreasing in sj and fj (Nj), and increasing in si and fi (Ni + k)

for all k ≥ 0.

In a more general model of competition with horizontal differentiation between firms

or in a setting with elastic aggregate demand, we may expect some of the winning firm’s

learning benefit to be shared with consumers. However, the result that consumers can be

made worse off by the winning firm’s learning because the losing firm is no longer willing to

subsidize as much in an attempt to compete is likely to be much more general. It implies

consumers can be better off if they could somehow deviate by coordinating on joining the

losing firm instead of the winning firm for a number of periods. The problem is that, given

each individual consumer is atomless and can freely switch in each period, she has no reason

to internalize this effect as her own decision about which firm to join will not affect the

consumer surplus she can obtain next period (in the case she is long lived). This suggests a

possible role for a data sharing policy, which we consider in the next section.

3.3 Data policy

In this subsection we use our framework to examine the effect on competition and con-

sumer welfare of three possible types of data policies: (i) requiring data sharing, (ii) enforcing

stricter consumer data privacy rules, and (iii) preventing an incumbent firm from acquiring

a non-competing firm that contains valuable data.
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3.3.1 Data sharing

Requiring the incumbent to share some of its data with the entrant would be one way

to help the entrant catch up to the learning of the incumbent, and based on our earlier

welfare analysis, this would seem to be good for consumers. Indeed, this would trivially be

the case for a policy in which the losing firm got to share any data of the winning firm as

a one-off intervention. However, if the incumbent’s data is always shared with the entrant,

then it may dampen both firms’ incentives to invest in building up their data in the first

place. In our framework, such investments are endogenously determined by the extent of

subsidies offered to consumers. Specifically, once the firm that is behind is able to share in

the other firm’s data through a data sharing policy, it will compete less aggressively (a form

of free-riding), which can result in higher prices and therefore lower consumer surplus.

To show this tradeoff formally, we consider the introduction of a policy which requires

any new data collected by firms be shared with each other. In our model, in every period

subsequent to the implementation of data sharing, both firms advance their learning by one

period (if they are not already at the threshold) regardless of who wins. This means that

from the period the policy is implemented onwards, which we treat as being in the first

period, the lowest price each firm is willing to charge is c. In every period j ≥ 0, firm I wins

if sI + fI(NI + j) > sE + fE (NE + j), and firm E wins otherwise. Consequently, the PDV

of consumer surplus after the implementation of the data sharing policy is

CS (NI , NE)′ =
∞∑
j=0

δj min {sI + fI(NI + j), sE + fE (NE + j)} − c

1− δ
. (6)

Meanwhile, in the absence of the data sharing policy, when sE − sI < ∆(NI , NE + 1) or

sE− sI ≥ ∆(NI + 1, NE), the losing firm does not subsidize so the PDV of consumer surplus

is just the PDV of the surplus offered by the losing firm, as in (4). When ∆(NI , NE + 1) ≤
sE−sI < ∆(NI +1, NE), the losing firm subsidizes, and the PDV of consumer surplus absent

data sharing is given in (5).

Comparing the expressions for consumer surplus, we obtain the following proposition

(the proof is in the appendix).

Proposition 5. Suppose data sharing requires whichever firm wins a given period to share

the data obtained with its rival. Suppose one firm is closer to its learning threshold than the

other, i.e. N I −NI < NE −NE or vice versa. Then there exist cutoff levels Θl (NI , NE) <

∆(NI , NE) and Θh (NI , NE) > ∆(NI , NE) such that:

� Data sharing increases the PDV of consumer surplus when sE − sI ≤ Θl (NI , NE) or

sE − sI ≥ Θh (NI , NE)
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� Data sharing decreases the PDV of consumer surplus when Θl (NI , NE) < sE − sI <
Θh (NI , NE).

Thus, data sharing increases consumer surplus when the losing firm is at a sufficiently

large disadvantage and decreases consumer surplus when the two firms are sufficiently evenly

matched. This is intuitive. When the losing firm is at a large disadvantage, it does not

subsidize, so there is no downside from data sharing, and therefore the positive effect of

keeping the firms evenly matched in all future periods dominates. However, when the two

firms are more evenly matched, the losing firm would normally subsidize heavily and data

sharing removes this incentive to subsidize, so this is where the downside of data sharing is

highest and overwhelms the positive effect.

Although consumers may be better or worse off under data sharing, it is easily seen that

the PDV of total welfare is higher with this type of data sharing because in every period

j ≥ 0, the total surplus created is max {sI + fI(NI + j), sE + fE (NE + j)} − c. In other

words, both firms are learning in every period so society gets the best of both in every

period.

3.3.2 Privacy of consumer data

A stricter privacy policy makes it harder for firms to gather customer data either by

restricting the type of data they can make use of or by making it easier for consumers to opt

out of sharing their data. We model this as both firms only being able to use a fraction of

any new customer data collected once the privacy policy has been implemented, assuming

the learning curves are S-shaped as in (3). In other words, the linear portion of each firm i’s

learning curve pivots to the right from its current position, which represents a slowing down

of the learning rate from customer data. However, firm i still eventually reaches the same

maximum value from learning of fi
(
N i

)
. This is illustrated in figure 2, where the learning

curve fi pivots to f ′i after the privacy policy is implemented.

The following proposition determines the effect of such a privacy policy on I’s competitive

advantage and on consumer surplus.

Proposition 6. Suppose both firms have S-shaped learning functions. Suppose I is (weakly)

closer to reaching its threshold and E’s learning algorithm is at least as good (i.e. N I−NI ≤
NE − NE and θE ≥ θI , with one inequality strict), both firms have already obtained some

positive value from learning (i.e. NI ≥ N I and NE ≥ NE), and I would win absent the

policy change (i.e. sE − sI < ∆ (NI , NE)). Then a privacy policy that slows down the rate
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at which both firms learn from their customers’ data increases I’s competitive advantage and

weakly decreases consumer surplus, strictly decreasing it if E subsidizes consumers before the

policy change.

The effect on I’s competitive advantage means that, when I is initially closer to its

threshold and/or E has a steeper learning function, slowing down the rate of learning has

a disproportionately negative effect on E. This reflects that E has more to gain from new

customer data, and therefore more to lose from reductions in the amount of data that is

usable.11 The logic of this effect is easiest to see in the extreme case when I is at (or almost

at) its threshold, and E is far away from reaching its threshold. A privacy policy that slows

down the amount of useful data that both firms can extract from their customers will have

no (or almost no) effect on I, as it has nothing (or almost nothing) left to learn, but it can

have a big effect on E which has a lot left to learn.

In contrast to the general result we discussed after Proposition 1 that the incumbent

(or more generally the winning firm) benefits from an improvement in learning technology,

here the incumbent benefits from a worsening of the technology. This reflects that here

the change in learning technology (i.e. slower learning) only applies to new data obtained

after the change, with the same eventual upper threshold for learning, whereas a general

improvement in technology applies to learning from existing as well as new data, with the

upper threshold for learning also changing. Thus, the effect of slowing down learning (by

implementing a privacy policy) is consistent with the effect of worsening the value of learning

from new data when both firms are on the increasing part of the S-shaped learning curve,

that we determined in part (i) of Proposition 2. The difference is that here the learning

11The result no longer holds generally when either E or both I and E are yet to move onto the increasing
parts of their learning curves. However, one can show it still holds in that case provided firms do not discount
the future too much.
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threshold stays unchanged, whereas a proportional worsening of the learning from new data

also reduces the learning threshold.

The decrease in consumer surplus in Proposition 6 arises because E lowers the subsidy

it offers, reflecting that it has less to gain by winning after the (stricter) privacy policy is

introduced. As a result, I (which continues to win given its competitive advantage increases)

doesn’t have to leave as much surplus with consumers to prevent them from switching to

E. Although we haven’t modeled any direct consumer benefits due to tighter privacy rules,

any such benefits should not affect the result given consumers can internalize them when

deciding which firm to join. We are, of course, abstracting from externalities (positive or

negative) that the use of a consumer’s private data may impose on other consumers or firms.

Thus, our result is not meant to speak to the overall effects of a stricter privacy policy, but

to point out that there may be an unintended downside of imposing stricter privacy policies

on competitive dynamics in general, and entrants with less customer data in particular.

3.3.3 Killer data acquisitions

Our framework can also be used to explore the interesting question of what happens

when firms can acquire an outside firm (or its dataset) in order to bolster their data position.

Starting from (NI , NE), assume there is an opportunity for E and I to acquire a measure

NA > 0 of data exclusively. We wish to know which firm will end up acquiring the data,

which is equivalent to figuring out which firm is willing to pay more for it (assuming the

owner of the data can commit to sell it exclusively), and whether the outcome will be efficient.

For each firm, there are potentially two sets of incentives to acquire data: one to create

new rents by using the data to move up the learning curve, and the other to protect rents by

denying valuable data to the competitor. For instance, if the incumbent has already reached

or is closer to its learning threshold than the entrant, but the entrant has a superior learning

technology, then the incumbent’s incentive is primarily to protect rents, and the entrant’s is

to deploy the data via its superior technology. We formalize this idea in what follows.

If I acquires NA, then the cutoff for E to win increases to ∆ (NI +NA, NE), whereas if E

acquires NA, then the cutoff for E to win decreases to ∆ (NI , NE +NA), with the understand-

ing that ∆ (NI +NA, NE) = ∆
(
N I , NE

)
whenever NI + NA ≥ N I and ∆ (NI , NE +NA) =

∆
(
NI , NE

)
whenever NE +NA ≥ NE. We will use this slight abuse of notation to state our

result in the following proposition in order to keep the expressions compact.

Proposition 7. Suppose there is an opportunity for E or I to acquire a dataset of measure

NA > 0. Assume at least one of the two firms (I or E) has not reached its maximum learning
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threshold. Then there exists a unique ∆∗ satisfying

∆ (NI , NE +NA) < ∆∗ < ∆ (NI +NA, NE) (7)

such that I wins the data if and only if sE − sI < ∆∗, and E wins the data otherwise. If

∆∗ < ∆ (NI +NA, NE +NA), then the cutoff in sE − sI above which E acquires the data is

too low from a social efficiency perspective (i.e. E acquires the data too often), whereas if

∆∗ > ∆ (NI +NA, NE +NA), then in equilibrium I acquires the data too often.

As shown in the proof in the Appendix, both scenarios in Proposition 7 are possible.

Thus, the equilibrium outcome of the data acquisition game can be socially inefficient in

either direction. Contrast this with our general efficiency result for the baseline model from

Proposition 3. The reason for the difference is that here the competition is for buying

data from a third party, who only cares about price and not about the respective utilities

currently offered by the two firms. By contrast, when the two firms compete for consumers,

these consumers care about the current utility and the price they are being charged.

To illustrate this result, we can look at a special case. Suppose one of the firms—I

without loss of generality—is already at the threshold, i.e. NI = N I . Then we have

∆ (NI +NA, NE +NA) = ∆
(
N I , NE +NA

)
= ∆ (NI , NE +NA) < ∆∗,

where the last inequality follows directly from (7). In this case I wins the data too often.

And conversely when E is already at the threshold. In other words, in the equilibrium of

the acquisition game when one firm has already reached its threshold of learning, that firm

wins too often relative to what is socially efficient. The idea is that the amount the firm

that is at the threshold gives up by not winning (namely its profit when competing with a

rival that is below its learning threshold) is greater than the amount that the rival can gain

by acquiring the data and winning, as in this case it competes with a rival that is already

at its threshold. In terms of the two firms’ incentives, I’s rent protection motive dominates.

Thus, we provide a theory of killer data acquisitions, in which the firm acquiring the data

has no use for it, and only acquires it to deny the rival access to it.

A final property of interest is that even though I may acquire the new data in equilibrium,

it doesn’t necessarily benefit from it. The existence of the new data NA makes it easier for

E to catch up, and I needs to buy the data to prevent E catching up, so I can end up worse

off as a result of the existence of the new data.12

12We show this result formally in Online Appendix D.
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3.4 Within-period learning

So far consumers have not had to form beliefs about which firm other consumers will

choose in any given period. Although there is a self-reinforcing dynamic across periods in

which a firm that attracts consumers this period improves its product and finds it easier

to attract consumers in subsequent periods, current consumers still did not face the usual

coordination problem that arises under classic network effects. Indeed, as noted earlier, even

with long-lived consumers, because each consumer was atomistic and could costlessly switch

each period, a consumer’s decision in one period had no effect on the opportunities they

could enjoy in subsequent periods, so there was no reason for any consumer to take into

account the decisions of other contemporary consumers.

In this section we show that a consumer coordination problem arises when across-user

learning is combined with the assumption that the product continues to improve during the

period(s) over which consumers derive utility from the product after paying for it. To do

so, we modify the baseline model by allowing firms to learn immediately from consumers

purchasing in the current period, rather than learning next period only, as we had assumed

previously. As argued in the introduction, within-period learning is a key distinguishing

feature of data-enabled learning in the context of cloud-based products, and contrasts with

learning in the context of traditional products, where the new and improved features were

only embedded in the next releases of the product, which would be sold to future consumers.

Because of this feature, other things equal, consumers prefer to buy from the firm they

expect others to also buy from, given they benefit from the resulting improvement in the

firm’s product during the consumption period.13

We consider consumers resolving the resulting coordination problem via two different

types of beliefs. First, we assume that in every period, consumers believe all other consumers

will coordinate on the equilibrium outcome that is best for them in that period, taking into

account the prices they face. This selects the equilibrium which maximizes the consumers’

surplus (i.e. net utility) within every period. When consumers live for one period only, which

recall is one interpretation of our across-user learning setup, this corresponds to the Pareto

optimal equilibrium for consumers for given prices, and with this in mind, we refer to these

beliefs as “Pareto beliefs”. We then contrast Pareto beliefs with beliefs that always favor

the incumbent. The latter means that in each period, consumers believe all other consumers

will buy from I whenever this is an equilibrium outcome given the prices charged by the two

firms.

Relative to Proposition 1, the case of within-period learning and Pareto beliefs is as if

13As is standard in models with network effects, this assumes there is some friction so that consumers all
choose simultaneously within a given period.
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both firms were one period closer to their respective maximum learning thresholds, whereas

the case of within-period learning and beliefs favoring I is as if only I were one period closer

to its maximum learning threshold. Then following an almost identical proof to that of

Proposition 1 we obtain the following result.

Proposition 8. Suppose I has previously sold to NI ≥ 0 consumers and E has previously

sold to NE ≥ 0 consumers. With Pareto beliefs and within-period learning, E wins in all

periods if and only if sE−sI ≥ ∆(NI +1, NE +1), and I wins in all periods otherwise, where

∆(NI , NE) is defined by (2). With favorable beliefs for I and within-period learning, E wins

in all periods if and only if sE − sI ≥ ∆(NI + 1, NE), and I wins in all periods otherwise.

The equilibrium outcome is socially efficient with Pareto beliefs and involves I winning for a

larger range of sE − sI than is socially efficient under favorable beliefs for I.

The intuition for these results is the same as before, adjusted for the fact that the winning

firm now learns from its current period’s consumers. Note the socially optimal outcome

takes into account within-period learning, just as the equilibrium conditions do. Moreover,

Corollary 1 continues to apply, given that the cutoffs that apply here are defined in the same

way as (2), but with the terms in NI and NE increased by zero or one depending on the type

of beliefs. By the same logic, all other results similarly carry over.

Taking the difference in cutoffs when beliefs favor I vs. when beliefs are Pareto, we obtain

∆(NI +1, NE)−∆(NI +1, NE +1) = (1−δ)

NE−NE−1∑
j=0

δj(fE(NE + j + 1)− fE(NE + j))

 ,

(8)

which is strictly positive whenever NE < NE.14 The expression in (8) is a measure of the

distortion that arises in the cutoff for E to win due to beliefs favoring I, relative to the

socially optimal outcome. It shows I’s position relative to its learning threshold is irrelevant

to the distortion implied by I enjoying favorable beliefs. This is because under both types

of beliefs, consumers evaluate the PDV of future product improvements that can be offered

by I assuming I will win in every period. Meanwhile, E is effectively viewed by consumers

as being one period of learning behind in every period under beliefs that favor I compared

to under Pareto beliefs.

Taking the difference between (8) evaluated at NE − k and (8) evaluated at NE, the

following result follows almost immediately.

14When NE = NE , beliefs are irrelevant, and (8) is equal to zero.
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Proposition 9. Suppose there is across-user learning and within-period learning. If E’s

learning function fE is weakly concave, the distortion in the cutoff resulting from beliefs

favoring I is higher the further away E is from its maximum learning threshold (i.e. the

lower NE is).

This result reflects that shifting E back by one period of learning has a bigger effect when

E is on the steeper (i.e. earlier) part of its learning function, and that the corresponding

disadvantage for E arises over additional periods when E is further away from its maximum

learning threshold. Put more directly, under the conditions of Proposition 9, the concern

that beliefs favoring I give I an inefficient advantage is greater the further away E is from its

maximum learning threshold.

4 Within-user learning

In this section we focus on within-user learning. We assume the same measure one of

forward-looking consumers that are present in every period. They are infinitely lived and

can switch firms in any period. The value to a given consumer of firm i’s product in the

current period is si + fi (Ni) for i ∈ {I, E}, where fi (Ni) = fi
(
N i

)
for all Ni ≥ N i.

The main difference from the case with across-user learning is that here Ni refers to the

number of times the consumer has purchased from the same firm before, rather than the

total number of consumers that the firm has sold to. Another key difference is that in the

presence of within-user learning, it is natural to allow firms to price discriminate across

consumers that have different histories. Unlike the case with across-user learning, here the

individual consumer’s history affects the value offered by each firm’s product. Consistent

with our perfect information setup, we assume that both firms can observe how many periods

a customer has consumed from each firm previously, and can price discriminate accordingly.15

As there is no across-user learning and firms can price discriminate with respect to individual

consumers, the analysis can be done independently for each individual consumer. Viewed in

this light, the model is consistent with I and E being in different competitive positions with

respect to different individual consumers (or consumer segments), and our results pertain to

any such consumers (or consumer segments).

15Obviously, each firm will know how many times a consumer has purchased from it before, so can condition
its prices on this information. Given the model setup in which the same consumers are present in every period,
each firm would therefore also be able to work out how many times a consumer has purchased from the rival
firm in the past. In practice, firms may elicit this information from consumers by requiring a consumer
supply their past purchase records so as to provide them with a better deal if they switch.

24



The following proposition characterizes when E wins, when I wins, the social efficiency

of the outcome, and the value obtained by firms.

Proposition 10. Suppose I has sold NI ≥ 0 times in the past to a given consumer and

E has sold NE ≥ 0 times to that consumer. Then a unique MPE exists in which E wins in

all periods if and only if sE − sI ≥ ∆(NI , NE), and I wins in all periods otherwise, where

∆(NI , NE) is defined by (2). The outcome is socially optimal. Moreover, the conditions for

the losing firm to subsidize are identical to those in Corollary 1.

Proposition 10 shows that the cutoff in sE − sI that determines which firm wins in each

period coincides with that obtained in the across-user learning case, and remains socially

optimal.16 This means our comparative static results carry over to the case of within-user

learning. However, despite this equivalence, the logic behind the result and its proof are quite

different. With across-user learning, we never had to solve the consumers’ forward-looking

problem given their choice in any given period didn’t affect their options in subsequent

periods. In contrast, here consumers have to take into account the effect of their current

choice of firm on their future options (within-user learning creates a switching cost), and so

we need to determine the value functions for consumers as well as for firms. In the proof

of Proposition 10, we construct the consumers’ value functions, and show that consumers

never expect to switch firms in equilibrium.

It is worth pointing out that Proposition 10 and its implications for comparative statics

can be applied at the level of an individual consumer (or consumer segment). Doing so for a

continuum of different consumers implies that I would sell in each period to consumers with

high values of sI and E would sell in each period to consumers with high values of sE. On the

surface the market might not look monopolized at all, but eventually each firm might face

little or no competitive pricing pressure from its rival as its data advantage with respect to its

own customers becomes sufficiently large. This suggests competition authorities should pay

more attention to the length of customer retention rather than asymmetric market shares in

such settings.

In contrast to the case of across-user learning, the logic for why the equilibrium outcome

under within-user learning coincides with the socially optimal outcome is more straightfor-

ward. Here consumers are forward-looking, so they take into account all future subsidies

and utility they will receive from their chosen firm. Starting from any point, whichever firm

creates greater PDV of gross surplus from learning, assuming it wins every period, will be

able to offer a higher level of utility plus subsidy to consumers, and so will win in the current

16It is easily confirmed, the results in Proposition 10 remain valid when N I →∞ and NE →∞, provided
learning functions are bounded by some power function.
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period given the Bertrand setting. And if a particular firm wins in the current period, this

just further increases the value it can offer in future periods, thereby ensuring the same firm

wins in all future periods. Consistent with this, in Online Appendix E we confirm that the

outcome under within-user learning and a finite time horizon is also always socially optimal,

in contrast to what we found with across-user learning.

In the case of within-user learning, outcomes are more competitive (e.g. the winning

firm’s profit is strictly lower) than with across-user learning for the same initial data and

learning functions.17 The logic is that within-user learning creates an increasing switching

cost: consumers take into account that the surplus they will be left with in any period is the

surplus offered by the losing firm (due to Bertrand competition), and that this surplus will

be lower if they buy from the winning firm this period versus if they buy from the losing

firm this period. Thus, the winning firm must compensate consumers by pricing lower in

the current period compared to the equivalent case with across-user learning.18 This result

would no longer hold if consumers were myopic. Indeed, the setting with within-user learning

but myopic consumers would result in exactly the same outcome as the case with across-user

learning, where consumers had no reason to consider more than their current surplus when

deciding which firm to buy from.

We now turn to the data policy issues analyzed earlier with across-user learning. First,

the effect of unanticipated data sharing on consumer surplus works in a very similar way to

the case with across-user learning. The PDV of consumer surplus after the implementation

of the same type of policy we considered earlier is the same here, equal to the expression in

(6):

CS (NI , NE)′ =
∞∑
j=0

δj min {sI + fI(NI + j), sE + fE (NE + j)} − c

1− δ
.

Meanwhile, the PDV of consumer surplus without the data sharing policy is

CS (NI , NE) =

{
sE−c
1−δ +

∑∞
j=0 δ

jfE(NE + j) if sE − sI < ∆(NI , NE)
sI−c
1−δ +

∑∞
j=0 δ

jfI(NI + j) if sE − sI ≥ ∆(NI , NE)
.

And it is easily seen that CS (NI , NE)′ ≤ CS (NI , NE) for all (NI , NE), which means that

data sharing always reduces consumer surplus here, in contrast to the case with across-user

learning, where data sharing only reduced consumer surplus when sE − sI was in a certain

interval. The fact that data sharing is more likely to reduce consumer surplus under within-

17This result follows from a straightforward comparison of the value functions from the proof of Proposition
1 with the value functions from the proof of Proposition 10. This is spelled out formally in Online Appendix
F.

18This result bears some resemblance to Section 5 in Taylor (2003), where consumers draw different
switching costs (high or low) that are unknown to firms. In his model, consumers anticipate being held up if
they are revealed to have high switching costs, so must be compensated for purchasing from the same firm.
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user learning is consistent with the result above that within-user learning makes the two firms

compete more aggressively in the absence of data sharing, which diminishes the potential

benefits of data sharing in the first place.

Second, the effect of a stricter privacy policy on I’s competitive advantage is the same as

with across-user learning because the cutoff ∆ (NI , NE) is the same here. The expression of

the change in consumer surplus due to the implementation of the stricter privacy policy is

different, but it turns out by following a very similar proof, to also be negative. Thus, under

the same conditions as Proposition 6 but applied to within-user learning, a stricter privacy

policy again lowers consumer surplus.

Third, and finally, the reasoning for and effects of data acquisition are the same here

relative to the case with across-user learning. In particular, Proposition 7 remains valid,

even though the exact expression for the equilibrium cutoff ∆∗ that determines which firm

wins the acquisition game is different.

5 Across-user and within-user learning

The purpose of this section is to briefly explore the implications of combining across-user

and within-user learning; in particular how doing so can sometimes lead to an endogenous

network effect in which consumer beliefs matter.

To show this, we combine the models of Sections 3 and 4 in the following way. First, we

assume there is just one fixed set of consumers of measure one who are present in all periods,

consistent with the model of within-user learning used in Section 4. And second, we assume

that the value a given consumer obtains from firm i’s product in the current period depends

on the two types of learning—the number of times that this measure one of consumers has

previously purchased from the same firm (across-user learning), and the number of times the

same consumer has previously purchased from the same firm (within-user learning).

A consumer who has previously consumed ni times from firm i ∈ {I, E} when firm i

has previously served the measure one of consumers Ni times in the past derives utility

si + fi (Ni, ni) in the current period if she chooses firm i’s product. We assume fi (Ni, ni) =

fi
(
N i, ni

)
for all Ni ≥ N i and fi (Ni, ni) = fi (Ni, ni) for all ni ≥ ni, where N i ≥ 1 is the

threshold level of across-user learning and ni ≥ 1 is the threshold level of within-user learning

for firm i. We also assume the learning function fi (., .) is everywhere weakly increasing in

both arguments for i ∈ {I, E}. Without loss of generality, we assume that fi (0, 0) = 0.

First, it is straightforward to show that if consumers are myopic, so they only consider

their current period payoffs in making their decisions, we can apply all the analysis of the

pure across-user learning model from Section 3. To do so, we just need to assume that the
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initial state is such that the number of times each consumer has chosen firm i in the past

corresponds to the number of times the measure one of all consumers have chosen firm i in

the past, so we start with ni = Ni. We can then apply our baseline analysis with across-user

learning by defining the learning function for firm i as

f̃i (Ni) = fi (Ni, ni)

so it combines both across-user learning and within-user learning, and the maximum learning

threshold for firm i as max
{
N i, ni

}
. For instance, with these assumptions, Proposition 1

continues to hold19 provided we replace fi in the proposition with f̃i. Given all the results of

Section 3 continue to hold, a researcher that wants to study a setting with across-user and

within-user learning can do so using our analysis in Section 3 provided they use the learning

function and maximum threshold defined above, and are willing to assume that consumers

are myopic.

If on the other hand consumers are forward-looking, things quickly become much more

complicated. As such, we focus on the simplest possible case for which consumers can face

a coordination problem in which their beliefs matter. Specifically, we assume nI = nE =

N I = NE = 1 (both firms only need to attract measure one of consumers for one period to

achieve maximal learning), nI = NI = 1 (I has already achieved its maximum learning), and

nE = NE = 0 (E starts with no learning).

To analyze this case, suppose first that consumers hold Pareto beliefs. This means that

when consumers are in state (NI , nI , NE, nE) = (1, 1, 0, 0), i.e. I has benefitted from one

period of both types learning whereas E has not had any learning whatsoever, and the prices

charged by the two firms in the current period are pI and pE respectively, consumers choose

I in the current period if and only if

sI + fI (1, 1)− pI + δu (1, 1, 0, 0) > sE − pE + δu (1, 1, 1, 1) ,

and they choose E otherwise. In other words, consumers coordinate on choosing the firm

that offers them the highest PDV of utility. It is then straightforward to show (the proof

is in Online Appendix H) that with Pareto beliefs, E wins all periods starting from state

(1, 1, 0, 0) iff

sE − sI ≥ fI (1, 1)− δfE (1, 1) ,

which is the socially efficient cutoff for E to win.

Suppose instead consumers hold beliefs favorable to I. This means that when consumers

19We formally prove this in Online Appendix G.
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are in state (1, 1, 0, 0), consumers choose I in the current period if and only if

sI + fI (1, 1)− pI + δu (1, 1, 0, 0) ≥ sE − pE + δu (1, 1, 0, 1) ,

and they choose E otherwise. Note the difference with the case of Pareto beliefs. Here,

consumers choose E if and only if it is individually rational for a consumer to choose E

even when she expects all other consumers to choose I. This means that to determine the

equilibrium we need to characterize what happens in the state (1, 1, 0, 1) of a single consumer

that has chosen E for one period whereas everyone else has always chosen I.20

By doing so, in Online Appendix H, we are able to prove the following result:

� If fE (0, 1) ≥ δfE (1, 1), then the cutoff for E to win under beliefs favorable to I is the

same as the cutoff under Pareto beliefs, which is equal to the efficient cutoff fI (1, 1)−
δfE (1, 1).

� If fE (0, 1) < δfE (1, 1), then the cutoff for E to win under beliefs favorable to I is

higher than the cutoff under Pareto beliefs.

The fact that Pareto beliefs lead to the efficient cutoff is consistent with earlier results,

showing that efficiency arises when firms compete in prices. It is also not surprising that E

has a harder time winning when beliefs favor I than under Pareto beliefs. The interesting

part of the result is that for the outcomes under the two types of beliefs to be different,

so that a coordination problem arises, across-user learning must be sufficiently important

relative to within-user learning (the condition fE (0, 1) < δfE (1, 1)).

6 Conclusion

Data-enabled learning is becoming an essential ingredient to understanding competition

between providers of an increasing range of products and services. We offer a tractable frame-

work in which to study the effect of various factors on a firm’s competitive advantage in the

presence of data-enabled learning. Our analysis shows that even when an incumbent starts

with a data advantage, if the entrant’s learning curve is steeper and can ultimately reach

a higher threshold of learning value (possibly due to better technology), through dynamic

pricing the entrant may be able to seize the market. Although as expected, an improvement

in one firm’s learning technology or data always helps that firm, the effect of a common

shock to technology or data is less obvious. We find the firm which starts off with more data

20The state (1, 1, 0, 1) means I has benefited from both types of learning, whereas E has only benefited
from within-user learning for the focal consumer.
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(the incumbent) sees its competitive advantage increase when both firms gain access to a

better technology (algorithm). Meanwhile, if both firms gain access to the same amount of

additional data, this favors the entrant when the firms have already started learning, as a

reduction in the number of periods both firms need to reach the maximum threshold level

of learning reduces the number of periods over which the incumbent can enjoy its learning

advantage. This result reverses when the firms have yet to start learning. Moreover, having

access to a concave learning technology is better than a convex learning technology, other

things equal. User beliefs favoring the incumbent can be an additional source of competitive

advantage for the incumbent, but only if across-user learning is combined with either (i)

continued product improvement during the period(s) over which consumers derive utility

from the product, or (ii) within-user learning.

We have also derived implications for public policy. A data-sharing policy which forces

the winning firm to share the data it obtains with the losing firm in all subsequent periods

would seem desirable because it results in increased competitive pressure on the winning

firm. However, the anticipation of data-sharing also disincentivizes the losing firm from

subsidizing (a form of free-riding). Thus, on balance, data-sharing is good for consumers

only when the losing firm is sufficiently far behind the winning firm (which is when it does

not have an incentive to subsidize even absent data-sharing). By slowing down the rate at

which firms learn, an unintended consequence of stricter privacy rules is that they enhance an

incumbent’s competitive advantage (because the incumbent is closer to its learning threshold)

which also reduces consumer surplus. The framework also has implications for merger policy:

it can explain why an incumbent which has already accumulated a lot of data may have an

excessive incentive to acquire a firm that contains a lot of data even if it doesn’t compete

with it or need the data to learn itself. This is driven by the incumbent’s interest in stopping

rivals from acquiring the firm and learning from its data, which would allow them to become

closer competitors, thus providing a theory of killer data acquisitions.

Our framework can be productively extended in many different directions. We have

mentioned some of these throughout the article, and due to space constraints, placed the

corresponding analysis in the Online Appendix. There are undoubtedly many others that

remain to be worked out. The most obvious is to add firm-specific shocks to consumer

valuations, while still retaining asymmetric learning functions, which would make the implied

industry dynamics more realistic. Our results can then be viewed as what would happen in

such a setting in the case that the variance of these stochastic terms becomes very small.

Another way to generalize our model is to allow firms to make investments in either the cost

of gathering data from their consumers or in the algorithms they use to learn from data,

rather than prices being the only strategic choice of the firms. We discussed one way to

30



incorporate depreciation in our setting. Future work could usefully analyze what happens

when depreciation is proportional to the total stock of existing data (which is more realistic),

possibly using a finite version of our model. Finally, one could also analyze what happens

with across-user learning in the case (some) customers have positive mass, which is more

natural when customers are businesses rather than regular consumers.

7 Appendix

This appendix contains the proofs of results not already proven in the main text.

7.1 Proof of Proposition 1 and Corollary 1

Given the learning thresholds of the two firms, we can restrict attention without loss of generality

to states (NI , NE) with 0 ≤ NI ≤ N I and 0 ≤ NE ≤ NE . As well as establishing ∆(NI , NE) in

Proposition 1, we will establish the firms’ value functions are given by

V I (NI , NE) =


sI−sE

1−δ + ∆(NI ,NE)−δ∆(NI ,NE+1)

(1−δ)2 if sE − sI < ∆ (NI , NE + 1)

sI−sE+∆(NI ,NE)

(1−δ)2 if ∆ (NI , NE + 1) ≤ sE − sI < ∆ (NI , NE)

0 if sE − sI ≥ ∆ (NI , NE)

(9)

V E (NI , NE) =


0 if sE − sI < ∆ (NI , NE)

sE−sI−∆(NI ,NE)

(1−δ)2 if ∆ (NI , NE) ≤ sE − sI < ∆ (NI + 1, NE)

sE−sI
1−δ −

∆(NI ,NE)−δ∆(NI+1,NE)

(1−δ)2 if sE − sI ≥ ∆ (NI + 1, NE)

.

(10)

To establish these expressions, we proceed by two-dimensional induction in (NI , NE). We start

with (NI , NE) = (N I , NE), then show the result for all (NI , NE) such that NI = N I (induction in

NE). We can then get the result for all (NI , NE) such that NE = NE by symmetry (induction in

NI). Finally, we show that if the result holds for (NI + 1, NE) and (NI , NE + 1), then it also holds

for (NI , NE), where 0 ≤ NI ≤ N I − 1 and 0 ≤ NE ≤ NE − 1. Together, these steps allow us to

conclude the result holds for any (NI , NE) such that 0 ≤ NI ≤ N I and 0 ≤ NE ≤ NE .

The state (NI , NE) = (N I , NE) is already handled in the main text, and the corresponding

value function for the firms are given in (1). Consider the case with NI = N I and 1 ≤ NE ≤ NE .

Suppose ∆(N I , NE) is given by ∆(NI , NE) in Proposition 1 and (9)-(10) hold with NI = N I (this

is the induction hypothesis).

Now consider the case in which NI = N I and E has previously sold to NE − 1 consumers.

Suppose E charges pE and I charges pI in the current period. I wins the current period if sI +

fI(N I) − pI > sE + fE(NE − 1) − pE . Otherwise, E wins. If E wins the current period, the

PDV of its current and future profits will be pE − c+ δV E(N I , NE). If it doesn’t win the current
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period, the PDV of its current and future profits will be δV E(N I , NE − 1). So E is willing to

price down to the point where pE − c + δV E(N I , NE) = δV E(N I , NE − 1), or in other words

pE = c− δ(V E(N I , NE)− V E(N I , NE − 1)). Based on the same logic, I is willing to price down to

pI = c− δ(V I(N I , NE − 1)− V I(N I , NE)).

Thus, if we denote by Ωi (NI , NE) the maximum surplus firm i is willing to offer consumers to

win in the current period when the current state is (NI , NE), then

ΩI
(
N I , NE − 1

)
= sI − c+ fI(N I) + δ(V I(N I , NE − 1)− V I(N I , NE))

ΩE
(
N I , NE − 1

)
= sE − c+ fE(NE − 1) + δ(V E(N I , NE)− V E(N I , NE − 1)).

Given Bertrand competition, I wins the current period iff

ΩI
(
N I , NE − 1

)
> ΩE

(
N I , NE − 1

)
. (11)

Next, we determine V I(N I , NE − 1) and V E(N I , NE − 1) as functions of ΩI
(
N I , NE − 1

)
and

ΩE
(
N I , NE − 1

)
. Suppose (11) holds. Then in the current period E sets pE = c−δ(V E(N I , NE)−

V E(N I , NE − 1)) and I wins by setting pI = sI + fI(N I)− ΩE
(
N I , NE − 1

)
. Then I’s value is

V I(N I , NE − 1) = δV I(N I , NE) + ΩI
(
N I , NE − 1

)
− ΩE

(
N I , NE − 1

)
,

and E’s value is V E(N I , NE − 1) = δV E(N I , NE − 1) given it loses and so will be in the same

situation next period. As δ < 1, this implies V E(N I , NE − 1) = 0.

Conversely, suppose (11) doesn’t hold. Then in the current period I sets pI = c−δ(V I(N I , NE−
1)−V I(N I , NE)) and E wins by setting pE = sE + fE(NE − 1)−ΩI

(
N I , NE − 1

)
. Then E’s value

is

V E(N I , NE − 1) = δV E(N I , NE − 1) + ΩE
(
N I , NE − 1

)
− ΩI

(
N I , NE − 1

)
and I’s value is V I(N I , NE − 1) = δV I(N I , NE) given it loses and will be in the state (N I , NE)

next period.

Combining the above two cases when (11) holds and when it doesn’t, we have

V I(N I , NE − 1) = δV I(N I , NE) + max
{

ΩI
(
N I , NE − 1

)
− ΩE

(
N I , NE − 1

)
, 0
}

(12)

V E(N I , NE − 1) = δV E(N I , NE − 1) + max
{

ΩE
(
N I , NE − 1

)
− ΩI

(
N I , NE − 1

)
, 0
}
.(13)

We can now plug the expressions of ΩI
(
N I , NE − 1

)
and ΩE

(
N I , NE − 1

)
above into (12) and

(13) to explicitly solve for V I(N I , NE − 1) and V E(N I , NE − 1). Note that V I(N I , NE − 1) will be

continuously decreasing in sE − sI and V E(N I , NE − 1) will be continuously increasing in sE − sI .
There are two possibilities: V E(N I , NE − 1) = 0 (i.e. (11) holds and I wins, so even if E were

to win the current period, it would still lose in the next period) and V E(N I , NE − 1) > 0 (i.e. (11)

doesn’t hold and E wins, so winning the current period would allow E to win in all future periods).
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Suppose first V E(N I , NE −1) = 0. We can solve (12) for V I(N I , NE −1) using the expressions

for V I(N I , NE) and V E(N I , NE) from the induction hypothesis and the fact that V E(N I , NE−1) =

0, which gives

V I(N I , NE − 1) =

{
sI−sE+fI(NI)−fE(NE−1)

1−δ if sE − sI < ∆(N I , NE)
sI−sE+(1−δ)(fI(NI)−fE(NE−1))+δ∆(NI ,NE)

(1−δ)2 if sE − sI ≥ ∆(N I , NE)
.

This implies V I(N I , NE − 1) ≥ 0 iff

sE − sI ≤ (1− δ)(fI(N I)− fE(NE − 1)) + δ∆(N I , NE) = ∆(N I , NE − 1).

Next, suppose V E(N I , NE−1) > 0, so V I(N I , NE−1) = δV I(N I , NE). As V I
(
N I , NE − 1

)
≥

V I
(
N I , NE

)
, we must have V I(N I , NE − 1) = V I(N I , NE) = 0 in this case. We can solve (13) for

V E(N I , NE − 1) using the expression for V E(N I , NE) from the induction hypothesis and the fact

that V I(N I , NE − 1) = V I(N I , NE) = 0, which gives

V E(N I , NE − 1) =
sE − sI + (1− δ)(fE(NE − 1)− fI(N I))− δ∆(N I , NE)

1− δ
.

This is positive iff sE − sI > ∆(N I , NE − 1).

Thus, combining the results with V E(N I , NE − 1) = 0 and V E(N I , NE − 1) > 0, we have

proven that ∆(N I , NE − 1), V I(N I , NE − 1) and V E(N I , NE − 1) satisfy the characterization in

Proposition 1 and (9)-(10), and by induction, this is true for any 0 ≤ NE ≤ NE when NI = N I .

Symmetry can be used to obtain a parallel result for all 0 ≤ NI ≤ N I when NE = NE .

Now consider any state (NI , NE) with 0 ≤ NI ≤ N I − 1 and 0 ≤ NE ≤ NE − 1, and suppose

that the results in Proposition 1 and (9)-(10) hold for the states (NI+1, NE) and (NI , NE+1)—this

is the induction hypothesis. Using the same logic as above when the state is (NI , NE), we have

V I(NI , NE) = δV I(NI , NE + 1) + max {Ω (NI , NE) , 0} (14)

V E(NI , NE) = δV E(NI + 1, NE) + max {−Ω (NI , NE) , 0} (15)

where

Ω (NI , NE) = sI + fI(NI) + δ(V I(NI + 1, NE)− V I(NI , NE + 1))

−sE − fE(NE)− δ
(
V E(NI , NE + 1)− V E(NI + 1, NE)

)
.

Again there are two possibilities, depending on whether Ω (NI , NE) is positive or not. If

Ω (NI , NE) ≥ 0, then we must have V E(NI , NE) = V E(NI+1, NE) = 0, whereas if Ω (NI , NE) ≤ 0,

then we must have V I(NI , NE) = V I(NI , NE + 1) = 0. When Ω (NI , NE) ≥ 0 (respectively,

Ω (NI , NE) ≤ 0) we can use the expressions of V I(NI + 1, NE) and V E(NI , NE + 1) (respec-

tively, V I(NI , NE + 1) and V E(NI + 1, NE)) from the induction hypothesis to solve (14) and
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(15) for V I(NI , NE) and V E(NI , NE). After some careful manipulations, which include rewriting

the resulting summation expressions for V I(NI , NE) and V E(NI , NE) in terms of ∆(NI , NE) and

∆(NI , NE+1), we confirm that the expressions of ∆(NI , NE), V I(NI , NE) and V E(NI , NE) satisfy

the characterization in Proposition 1 and (9)-(10) (these additional details are provided in Online

Appendix I).

By repeated application of the induction hypothesis, we obtain that (9)-(10), and the expression

for ∆(NI , NE) in Proposition 1 hold for all states (NI , NE), where 0 ≤ NI ≤ N I −1 and 0 ≤ NE ≤
NE − 1.

Finally, to show Proposition 1 continues to apply in the limit as N I → ∞ and NE → ∞, we

need to prove the expression in (2) continues to be well defined in this limit case. This is equivalent

to proving limNi→∞
∑Ni

j=0 δ
jfi(j) exists given this also implies limNi→∞ δNifi(Ni) exists as the

summation includes the later expression and other positive terms. Consider the power function

fi(x) = θix
βi where θi > 0 and βi > 0. Using the ratio test, we know that limj→∞( δ

j+1(j+1)β

δjjβ
) =

δ < 1 which implies the limit exists for any such power function. Then by the limit comparison test,

because the relevant terms are all positive, the limits exist for any unbounded learning function fi

provided there exists some κi > 0, such that limj→∞
fi(j)
jβ
≤ κi for i = {I, E}.

7.2 Proof of Proposition 2

For (i), suppose first NE+k < NI +k ≤ N . Then imposing that learning functions are identical

on (3), we get

∆(NI + k,NE + k)−∆(NI , NE) =
(1− δk)(1− δN−N )(δN−NI − δN−NE )θ

(1− δ)δN−N+k−1
> 0.

Suppose instead NI > NE > N and NI + k ≤ N . Then

∆(NI + k,NE + k)−∆(NI , NE) = −(1− δk)(δN−NI+1 − δN−NE+1)θ

(1− δ)δk
< 0.

For (ii), the new learning curves are

f̃i
(
N ′i
)

= fi (Ni) + α
(
fi
(
N ′i
)
− fi (Ni)

)
for all N ′i ≥ Ni. Recall fi (Ni) = θi max

{
min

{
Ni, N i

}
−N i, 0

}
for i = I, E.

Thus:

� If Ni ≤ N i for i = I, E, then

f̃i
(
N ′i
)

= αfi
(
N ′i
)

= αθi max
{

min
{
N ′i , N i

}
−N i, 0

}
.

In this case, we have ∆̃(NI , NE) = α∆(NI , NE), so α amplifies the advantage of the firm
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that had a competitive advantage to begin with, which is I in this setting.

� If N i < Ni ≤ N i for i = I, E, then

f̃i
(
N ′i
)

= θi (Ni −N i) + αθi
(
min

{
N ′i , N i

}
−Ni

)
= αθi min

{
N ′i , N i

}
− θi ((α− 1)Ni +N i) .

Straightforward calculations then lead to the new expression of the threshold

∆̃(NI , NE) = θI

(
NI −N I + α

δ − δNI−NI+1

1− δ

)
− θE

(
NE −NE + α

δ − δNE−NE+1

1− δ

)
,

which we want to compare to

∆(NI , NE) = θI

(
NI −N I +

δ − δNI−NI+1

1− δ

)
− θE

(
NE −NE +

δ − δNE−NE+1

1− δ

)
.

If θI = θE = θ and N I = NE = N , then

∆̃(NI , NE)−∆(NI , NE) = (α− 1) θ
δN−NE+1 − δN−NI+1

1− δ
.

Thus, if NI > NE , then ∆̃(NI , NE)−∆(NI , NE) < 0, so α reduces I’s competitive advantage.

7.3 Proof of Proposition 5

The proof follows in three steps. First, we show that CS (NI , NE)′ − CS (NI , NE), as defined

by (4)-(6), is decreasing in sE − sI for sE − sI ≤ ∆(NI , NE) and increasing in sE − sI for sE − sI ≥
∆(NI , NE). To see this, note

� If sE − sI < ∆(NI , NE + 1), then

CS (NI , NE)′ − CS (NI , NE) =
∞∑
j=0

δj min {sI − sE + fI(NI + j), fE (NE + j)} ,

which is clearly (weakly) decreasing in sE − sI .

� If ∆(NI , NE + 1) ≤ sE − sI < ∆(NI , NE), then

CS (NI , NE)′−CS (NI , NE) =
∞∑
j=0

δj min {fI(NI + j), sE − sI + fE (NE + j)}+ sI − sE
(1− δ)2

+K,
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where K is a term constant in sE − sI . And as

∞∑
j=0

δj (sE − sI) =
sE − sI
1− δ

<
sE − sI
(1− δ)2

,

we conclude that CS (NI , NE)′−CS (NI , NE) is strictly decreasing in sE− sI on this region.

� The cases with sE − sI ≥ ∆(NI + 1, NE) and ∆(NI , NE) ≤ sE − sI < ∆(NI + 1, NE) are

respectively weakly and strictly increasing in sE − sI , following symmetric arguments to the

above two cases.

Second, we show that CS (NI , NE)′−CS (NI , NE) < 0 when sE − sI = ∆(NI , NE). Indeed, in

this case we have

CS (NI , NE)′ ≤
∞∑
j=0

δj (sE + fE(NE + j))− c

1− δ
= CS (NI , NE) .

Furthermore, CS (NI , NE)′ = CS (NI , NE) is possible in this case iff

sE + fE (NE + j) ≤ sI + fI(NI + j)

for all j ≥ 0. However, because

sE − sI = ∆(NI , NE) = (1− δ)
∞∑
j=0

δj (fI(NI + j)− fE(NE + j)) ,

we conclude that CS (NI , NE)′ = CS (NI , NE) is only possible in this case if

sE + fE (NE + j) = sI + fI(NI + j)

for all j ≥ 0. Given NE − NE > N I − NI , this would require fE
(
NE

)
= fE

(
NE − 1

)
, which is

ruled out by assumption. Thus, we must have CS (NI , NE)′ − CS (NI , NE) < 0 when sE − sI =

∆(NI , NE).

Third, we show that CS (NI , NE)′−CS (NI , NE) > 0 when sE−sI ≤ min {∆(NI , NE + 1), fI (NI)− fE(NE)}
and when sE − sI > max {∆(NI + 1, NE), fI (NI)− fE(NE)}. In the first case we are in the region
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where there is no subsidy without data sharing, so we have

CS (NI , NE)′ =
∞∑
j=0

δj min {sI + fI(NI + j), sE + fE (NE + j)} − c

1− δ

>
∞∑
j=0

δj min {sI + fI(NI + j), sE + fE (NE)} − c

1− δ

=
∞∑
j=0

δj (sE + fE (NE))− c

1− δ
= CS (NI , NE) .

And, by a symmetric argument, in the case when sE−sI > max {∆(NI + 1, NE), fI (NI)− fE(NE)},
we have CS (NI , NE)′ > CS (NI , NE).

Together, these three steps, and the continuity of the two functions CS (NI , NE) and CS (NI , NE)′

in sE − sI imply the result in the proposition.

7.4 Proof of Proposition 6

After the stricter privacy policy is implemented, θi becomes φθi, whereas N i becomes
N i
φ −

(1−φ)Ni
φ and N i becomes N i

φ −
(1−φ)Ni

φ , for i ∈ {I, E}. Plugging these values into the expression of

the cutoff for S-shaped learning curves provided in (3) with N i ≤ Ni ≤ N i for i ∈ {I, E}, the new

cutoff is21

∆(NI , NE)′ = θI (NI −N I) + φθI

δ − δNI−NIφ
+1

1− δ

 (16)

−

θE (NE −NE) + φθE

δ − δNE−NEφ
+1

1− δ

 .

So the change in the cutoff is

∆(NI , NE)′ −∆(NI , NE) =
δ

1− δ
(
θIy

(
N I −NI

)
− θEy

(
NE −NE

))
, (17)

where y (m) = δm − φδ
m
φ − (1− φ) and 0 < φ < 1. The expression in (17) is non-negative when

θE ≥ θI and N I −NI ≤ NE −NE , and positive when one of the two inequalities is strict. To see

this, note y
(
NE −NE

)
≤ y

(
N I −NI

)
< 0 because y (0) = 0 and y′ (m) =

(
δm − δ

m
φ

)
ln δ < 0.

This means that the new policy increases I’s competitive advantage.

21To avoid integer complications, assume there exist integers mI ≥ 1 and mE ≥ 1 such that φ =
NI−NI

NI−NI+mI
= NE−NE

NE−NE+mE
. Thus, mI and mE are the number of additional periods of learning required

for each firm to reach its maximum learning threshold due to the stricter privacy policy.
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Applying the S-curve to (5), the PDV of consumer surplus when I wins equals

CS (NI , NE) =
sI − c
1− δ

+θI

NI−NI∑
k=0

δk (NI + k −N I)+
δNI−NI+1

1− δ
θI
(
N I −N I

)
−
(
sI − sE + ∆(NI , NE)

(1− δ)2

)

without the policy. As I wins without the policy, and the policy increases I’s competitive advantage,

I must continue to win after the policy is introduced. The PDV of consumer surplus with the policy

equals

CS (NI , NE)′ =
sI − c
1− δ

+θI

NI−NI
φ∑
k=0

δk(NI−N I+φk)+
δ
NI−NI

φ
+1

1− δ
θI
(
N I −N I

)
−
(
sI − sE + ∆(NI , NE)′

(1− δ)2

)
,

where ∆(NI , NE)′ is defined in (16). The change in consumer surplus is

∆(NI , NE)−∆(NI , NE)′

(1− δ)2 − θI
NI−NI∑
k=0

kδk (1− φ) (18)

−
θI

(
δNI−NI+1 − δ

NI−NI
φ

+1
)

1− δ
(
N I −N I

)
+ θI

NI−NI
φ∑

k=NI−NI+1

δk(NI −N I + φk). (19)

Given ∆(NI , NE)′ > ∆(NI , NE), the two terms in (18) are negative. Using φ = NI−NI
NI−NI+mI

, the

expression in (19) can be rewritten as

−δNI−NI+1 N I −NI

(1− δ)2 (N I −NI +mI

) (mI (1− δ)− (1− δmI ))

which is equal to zero if mI = 1, and is negative for mI > 1 given mI (1− δ) − (1− δmI ) =

(1− δ)
(
mI −

∑mI
k=1 δ

k−1
)
.

7.5 Proof of Proposition 7

First, if sE − sI < ∆ (NI , NE +NA), then E is not willing to pay anything for NA because even

if it acquires it, it’s not enough to make it win. This also means that E can’t have been winning

originally without the data, so it makes zero profits regardless of who acquires NA. In this case, I

wins the data as it is willing to pay up to the value it would get if it wins the data less the value

it would get if E wins the data—and it is straightforward to verify that this difference is positive

if NI < N I or NE < NE .

Second, if sE − sI ≥ ∆ (NI +NA, NE), then we are in the symmetric case where I is willing to

pay nothing for the data and E acquires it.
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Suppose now we are in the remaining (and interesting) case

∆ (NI , NE +NA) ≤ sE − sI < ∆ (NI +NA, NE) ,

which means that whichever firm acquires the data will win in all periods. Note that we also have

∆ (NI , NE +NA) ≤ ∆ (NI + 1, NE +NA) ≤ ∆ (NI +NA, NE) ,

with strict inequalities if NI < N I and NE < NE . Consequently, using (9)-(10), E’s willingness-

to-pay for the data is WE (sE − sI), where

WE (x) =


x−∆(NI ,NE+NA)

(1−δ)2 if ∆ (NI , NE +NA) ≤ x < ∆ (NI + 1, NE +NA)

x
1−δ −

∆(NI ,NE+NA)−δ∆(NI+1,NE+NA)

(1−δ)2 if ∆ (NI + 1, NE +NA) ≤ x < ∆ (NI +NA, NE)
.

The two cases in this expression correspond to whether I subsidizes after E wins the data or not.

Similarly, I’s willingness to pay for the data is WI (sE − sI), where

WI (x) =


−x
1−δ + ∆(NI+NA,NE)−δ∆(NI+NA,NE+1)

(1−δ)2 if ∆ (NI , NE +NA) ≤ x < ∆ (NI +NA, NE + 1)

−x+∆(NI+NA,NE)

(1−δ)2 if ∆ (NI +NA, NE + 1) ≤ x < ∆ (NI +NA, NE)

Note thatWE (x) is increasing in x andWI (x) is decreasing in x. Furthermore, WE (∆ (NI , NE +NA)) =

0 and limx→∆(NI+NA,NE)WI (x) = 0. Thus, asWE (x) andWI (x) are continuous, ∆ (NI , NE +NA) <

∆ (NI +NA, NE), and combining with the two other cases discussed above, we conclude that there

is a unique ∆∗ such that I’s willingness-to-pay for the data is larger (and therefore I wins) when

sE − sI < ∆∗ and E’s willingness-to-pay is larger (and therefore E wins) for ∆∗ ≥ sE − sI . Given

we assumed we are in the situation where at least one firm is not already at its learning threshold,

the cutoff ∆∗ satisfies (7). Noting that ∆ (NI + 1, NE +NA) ≤ ∆ (NI +NA, NE + 1) and that the

socially efficient condition for E to win the data is sE − sI ≥ ∆ (NI +NA, NE +NA), we obtain

the result stated in the Proposition.22

7.6 Proof of Proposition 10

As discussed in the text, the analysis can be conducted with a representative consumer. We

will show that the firms’ value functions are

V I(NI , NE) = max

{
sI − sE + ∆(NI , NE)

1− δ
, 0

}
(20)

V E(NI , NE) = max

{
sE − sI −∆(NI , NE)

1− δ
, 0

}
, (21)

22The explicit characterization of ∆∗ is relegated to Online Appendix C.
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where ∆ (NI , NE) is given by (2) in the main text.

A key difference with the proof of Proposition 1 is that here we need to construct the value

function for the consumer as the consumer needs to take future utility into account when deciding

which firm to buy from. We denote this u(NI , NE), which measures the PDV of surplus a consumer

expects to obtain from making her optimal choices in every stage when firms play their equilibrium

strategies and the consumer has previously bought NI times from firm I and NE times from firm

E.

As in the case with across user learning, the state (NI , NE) is equivalent to the state
(
N I , NE

)
for all NI ≥ N I . And similarly, the state (NI , NE) is equivalent to the state

(
NI , NE

)
for all

NE ≥ NE . So we can restrict attention to states (NI , NE) with 0 ≤ NI ≤ N I and 0 ≤ NE ≤ NE .

It is easily verified that when (NI , NE) = (N I , NE), we have

V I(N I , NE) =
max

{
sI + fI(N I)− sE − fE(NE), 0

}
1− δ

V E(N I , NE) =
max

{
sE + fE(NE)− sI − fI(N I), 0

}
1− δ

u(N I , NE) =
min

{
sI + fI(N I), sE + fE(NE)

}
− c

1− δ
.

Consider the case with NI = N I and 1 ≤ NE ≤ NE . Suppose that ∆(N I , NE), V I(N I , NE)

and V E(N I , NE) are given by (2), (20) and (21) with NI = N I , and that the corresponding value

function for consumers is

u(N I , NE) = min

sI + fI(N I)− c
1− δ

,
∞∑
j=0

δjfE(NE + j) +
sE − c
1− δ

 .

This is the induction hypothesis.

Consider now the state (N I , NE − 1). The consumer chooses I in the current period iff

sI + fI(N I)− pI + δu(N I , NE − 1) > sE + fE(NE − 1)− pE + δu(N I , NE).

I is willing to set pI down to the point where it is indifferent between winning or losing the current

period, i.e. pI = c − δ(V I(N I , NE − 1) − V I(N I , NE)). Similarly, E is willing to set pE down to

pE = c− δ(V E(N I , NE)− V E(N I , NE − 1)).

If we denote by Ωi (NI , NE) the PDV of the maximum surplus firm i is willing to offer consumers

to win in the current period when the current state is (NI , NE), then

ΩI
(
N I , NE − 1

)
= sI − c+ fI(N I) + δ(V I(N I , NE − 1)− V I(N I , NE) + u(N I , NE − 1))

ΩE
(
N I , NE − 1

)
= sE − c+ fE(NE − 1) + δ(V E(N I , NE)− V E(N I , NE − 1) + u(N I , NE)).
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Given Bertrand competition, I wins the current period iff

ΩI
(
N I , NE − 1

)
> ΩE

(
N I , NE − 1

)
.

Using the same logic as in the Proof of Proposition 1, we obtain

u(N I , NE − 1) = min
{

ΩI
(
N I , NE − 1

)
,ΩE

(
N I , NE − 1

)}
(22)

V I(N I , NE − 1) = δV I(N I , NE) + max
{

ΩI
(
N I , NE − 1

)
− ΩE

(
N I , NE − 1

)
, 0
}

(23)

V E(N I , NE − 1) = δV E(N I , NE − 1) + max
{

ΩE
(
N I , NE − 1

)
− ΩI

(
N I , NE − 1

)
, 0
}
.(24)

There are two possibilities: ΩI
(
N I , NE − 1

)
≥ ΩE

(
N I , NE − 1

)
or ΩI

(
N I , NE − 1

)
< ΩE

(
N I , NE − 1

)
.

Suppose first ΩI
(
N I , NE − 1

)
≥ ΩE

(
N I , NE − 1

)
, which immediately implies V E(N I , NE −

1) = 0. Using the expressions of V I(N I , NE), V E(N I , NE) and u(N I , NE) from the induction

hypothesis, we then solve (22) and (23) for V I(N I , NE − 1) and u(N I , NE − 1) to obtain

V I(N I , NE − 1) =
sI − sE + ∆(N I , NE − 1)

1− δ

u(N I , NE − 1) =
sE − c
1− δ

+
∞∑
j=0

δjfE(NE − 1 + j). (25)

Now suppose ΩI
(
N I , NE − 1

)
< ΩE

(
N I , NE − 1

)
, which means E wins the current period, so

V I(N I , NE − 1) = δV I(N I , NE), which implies V I(N I , NE − 1) = V I(N I , NE) = 0 because we

must have V I(N I , NE − 1) ≥ V I(N I , NE). Furthermore, (22) and (24) become

u(N I , NE − 1) =
sI + fI(N I)− c

1− δ
(26)

V E(N I , NE − 1) =
sE − sI −∆(N I , NE − 1)

1− δ
.

Thus, combining the results with ΩI
(
N I , NE − 1

)
≥ ΩE

(
N I , NE − 1

)
and ΩI

(
N I , NE − 1

)
<

ΩE
(
N I , NE − 1

)
, we have proven that ∆(N I , NE−1), V I(N I , NE−1) and V E(N I , NE−1) satisfy

the characterization in (2), (20) and (21), and u(N I , NE − 1) is given by the minimum of the two

expressions in (25) and (26). By induction, this is true for any 0 ≤ NE ≤ NE when NI = N I .

Symmetry can then be used to obtain a parallel result for all 0 ≤ NI ≤ N I when NE = NE .

Now consider any state (NI , NE) with 0 ≤ NI ≤ N I − 1 and 0 ≤ NE ≤ NE − 1. The induction

hypothesis is that the expressions (2), (20) and (21) hold for the states (NI+1, NE) and (NI , NE+1)

and that the value functions for consumers in these two states are

u(NI + 1, NE) = min


∞∑
j=0

δjfI(NI + 1 + j) +
sI − c
1− δ

,

∞∑
j=0

δjfE(NE + j) +
sE − c
1− δ
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u(NI , NE + 1) = min


∞∑
j=0

δjfI(NI + j) +
sI − c
1− δ

,

∞∑
j=0

δjfE(NE + 1 + j) +
sE − c
1− δ

 .

Using the same logic as above, we have

u(NI , NE) = min
{

ΩI(NI , NE),ΩE(NI , NE)
}
, (27)

where

ΩI(NI , NE) = sI − c+ fI(NI) + δ(V I(NI + 1, NE)− V I(NI , NE + 1) + u(NI + 1, NE))

ΩE(NI , NE) = sE − c+ fE(NE) + δ(V E(NI , NE + 1)− V E(NI + 1, NE) + u(NI , NE + 1))

and

V I(NI , NE) = δV I(NI , NE + 1) + max {Ω(NI , NE), 0} (28)

V E(NI , NE) = δV E(NI + 1, NE) + max {−Ω(NI , NE), 0} , (29)

where Ω(NI , NE) ≡ ΩI(NI , NE)− ΩE(NI , NE).

Again there are two possibilities, depending on whether Ω(NI , NE) > 0 or not. If Ω(NI , NE) >

0, then we must have V E(NI , NE) = V E(NI +1, NE) = 0, whereas if Ω(NI , NE) ≤ 0, then we must

have V I(NI , NE) = V I(NI , NE + 1) = 0. For each of these cases, we can use the expressions of

u(NI + 1, NE), u(NI , NE + 1), V I(NI , NE + 1) and V E(NI + 1, NE) from the induction hypothesis

to solve (27), (28) and (29) for V I(NI , NE), V E(NI , NE) and u (NI , NE). Then we can rewrite the

resulting summation expressions in V I(NI , NE) and V E(NI , NE) in terms of ∆(NI , NE) to obtain

V I(NI , NE) = max

{
sI − sE + ∆(NI , NE)

1− δ
, 0

}
V E(NI , NE) = max

{
sE − sI −∆(NI , NE)

1− δ
, 0

}
and

u(NI , NE) = min


∞∑
j=0

δjfI(NI + j) +
sI − c
1− δ

,

∞∑
j=0

δjfE(NE + j) +
sE − c
1− δ

 .

By repeated application of the induction hypothesis, the results in Proposition 10 (as well as the

expressions (20) and (21)) hold for all states (NI , NE), with 0 ≤ NI ≤ N I and 0 ≤ NE ≤ NE .

Finally, we can confirm that consumers do not want to switch firms along the equilibrium path.

Suppose the current state is (NI , NE). If sE − sI < ∆(NI , NE), then consumers choose I in the

current period, so next period the state will be (NI + 1, NE). Given ∆(NI , NE) is increasing in

NI , this means in the subsequent period consumers will choose I again, and so on until NI = N I .

When the state is (N I , NE), all subsequent periods will have an identical state and outcome, in
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which consumers choose I. Conversely, if sE − sI ≥ ∆(NI , NE), then consumers choose E in the

current period, so next period the state will be (NI , NE + 1). Given ∆(NI , NE) is decreasing in

NE , this means in the subsequent period consumers will choose E again, and so on until NE = NE .

At the state (NI , NE), all subsequent periods will have an identical state and outcome, in which

consumers choose E.
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