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Section 1 shows the sense in which Proposition 1 and 2 in Section 4 of the main paper hold in a

much more general setting. Section 2 shows that the principal can achieve the best possible outcome

with a linear contract. Section 3 establishes the result stated at the end of Section 5.2 in the main

paper, namely that Proposition 4 continues to hold even if prices are endogenous and contractible,

and there are production costs. Section 4 provides the detailed working for the analysis in Section

6.1 of the main paper with liquidity constraints. Finally, Section 5 establishes the results stated in

Section 6.3 in the main paper, which focuses on the case in which prices are the transferable decision

variables.

1 Generalization of our model

In this section we extend our model to allow for general functional forms and any number of non-

transferable actions (i.e. more than one of each type).

Denote by R (a,q,Q) the revenue generated jointly by the principal and the agent if the latter

accepts the principal’s contract. The actions contained in the vector a =
(
a1, .., aMa

)
are transferable,

i.e. each of them can be chosen either by the principal or by the agent, depending on how the

principal chooses to allocate control rights. The actions contained in the vectors q =
(
q1, .., qMq

)
and Q =

(
Q1, .., QMQ

)
are non-transferable. I.e. the agent always chooses q ∈ RMq

+ at cost c (q) ≡∑Mq

i=1 c
i
(
qi
)

and the principal always chooses Q ∈ RMQ

+ at cost C (Q) ≡
∑MQ

i=1 C
i
(
Qi
)
. For the

transferable actions, if the principal chooses ai ∈ R+, it incurs cost F i
(
ai
)
. If the agent chooses

ai ∈ R+, it incurs cost f i
(
ai
)

= θiF i
(
ai
)
. We assume there is at least one action of each type, i.e.

Mq ≥ 1, MQ ≥ 1 and Ma ≥ 1.

The principal chooses the set D ⊂ {1, ..,Ma} of transferable decisions over which it keeps control

∗MIT Sloan School of Management, Cambridge, MA 02142, E-mail: ahagiu@mit.edu
†Department of Economics, National University of Singapore, Singapore 117570, E-mail: jwright@nus.edu.sg

1



(leaving the agent to control decisions i ∈ {1, ..,Ma} \D) and offers a revenue-sharing contract Ω (R)

to the agent, where Ω (.) can be any arbitrary function of the revenue R generated. The contract

means that the agent obtains Ω (R), while the principal obtains R− Ω (R).

Throughout this section, we use the following three notational conventions. First, for variables

and parameters that apply to both the agent and the principal, we use lowercase for the agent and

uppercase for the principal (e.g. q and Q). Second, vectors are written in bold. Third, subscripts next

to functions always indicate derivatives: for example, F i
ai

indicates the derivative of F i with respect

to ai and Rai indicates the partial derivative of R with respect to the transferable action ai.

We make the following technical assumptions:

(a1) All functions are twice continuously differentiable in all arguments.

(a2 ) For all i ∈ {1, ..,Ma}, j ∈ {1, ..,Mq} and k ∈ {1, ..,MQ}, the revenue function R (a,q,Q) is

increasing in ai, qj and Qk, the cost functions F i, cj and Ck are increasing and convex, and

F i (0) = F iai (0) = cj (0) = cj
qj

(0) = Ck (0) = CkQk (0) = 0.

(a3) For all t ∈[0 , 1 ] and D ⊂ {1, ...,Ma}, tR (a,q,Q)−
∑

i∈D F
i
(
ai
)
−
∑

i∈{1,...,Ma}\D θ
iF i
(
ai
)
−

c (q)−C (Q) is concave in (a,q,Q) and admits a unique finite maximizer in any subset of the Ma +

Mq +MQ variables (a,q,Q) for any values of the remaining variables.

(a4) For all τ ∈ [0, 1]Ma+Mq+MQ, the system of equations

τ iRai (a,q,Q) = F i
ai

(
ai
)

for i ∈ D

τ iRai (a,q,Q) = θiF i
ai

(
ai
)

for i ∈ {1, ..,Ma} \D

τMa+jRqj (a,q,Q) = cj
qj

(
qj
)

for j ∈ {1, ..,Mq}

τMa+Mq+kRQk (a,q,Q) = Ck
Qk

(
Qk
)

for k ∈ {1, ..,MQ}

(1)

admits a unique solution (a (τ ) ,q (τ ) ,Q (τ )).

These assumptions are standard and ensure that the optimization problems considered below are

well-behaved. Assumptions (a3) and (a4) ensure that there is always a unique finite solution to the

optimization problems we consider; in particular, they obviate the need for more general stability

conditions for uniqueness, that would be quite complex in this setting. Furthermore, the principal

always finds it optimal to induce the agent to participate.

In the next section, we establish that in this set-up, we can restrict attention to linear contracts

without loss of generality. This result implies that we can restrict attention to contracts offered by
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the principal that take the form

Ω (R) = (1− t)R− T,

where T can be interpreted as the fixed fee collected by the principal and t ∈ [0, 1] as the share of

revenue kept by the principal. Then given an allocation of decision rights D ⊂ {1, ..,Ma} chosen by

the principal, its profits can be written as1

Π∗ (D) = max
t,a,q,Q

R (a,q,Q)−
∑
i∈D

F i
(
ai
)
−

∑
i∈{1,...,Ma}\D

θiF i
(
ai
)
− c (q)− C (Q)

 (2)

s.t.

tRai (a,q,Q) = F i
ai

(
ai
)

for i ∈ D

(1− t)Rai (a,q,Q) = θiF i
ai

(
ai
)

for i ∈ {1, ..,Ma} \D

(1− t)Rqj (a,q,Q) = cj
qj

(
qj
)

for j ∈ {1, ..,Mq}

tRQk (a,q,Q) = Ck
Qk

(
Qk
)

for k ∈ {1, ..,MQ} .

(3)

For future reference, denote by tP∗ and tA∗ the respective optimal variable fees charged by the

principal in P-mode and A-mode, i.e. the respective solutions in t that emerge from (2)-(3) when

D = {1, ..,Ma} and D = Ø. Also let

ΠP∗ ≡ Π∗ ({1, ..,Ma}) and ΠA∗ ≡ Π∗ (Ø) .

The analysis in the rest of this section will rely on the following additional assumption:

(a5) For D ⊂ {1, ..,Ma} and τ ∈ [0, 1)Ma+Mq+MQ, if

Π (D, τ ) ≡ R (a (τ ) ,q (τ ) ,Q (τ ))−
∑
i∈D

F i
(
ai(τ )

)
−

∑
i∈{1,...,Ma}\D

θiF i
(
ai(τ )

)
− c (q (τ ))−C (Q (τ )) ,

where (a (τ ) ,q (τ ) ,Q (τ )) is the unique solution to the system of equations (1), then Π (D, τ ) is

increasing in each τ i for i ∈ {1, ..,Ma +Mq +MQ}.

In words, this assumption requires that reducing the distortion in any second stage decision problem

for any action (by increasing τ i) increases the principal’s overall net profit. It can be shown that a

sufficient condition for (a5) to hold is that R (a,q,Q) is weakly supermodular in all of its arguments.2

1At the optimum, the fixed fee T of the linear contract is always set such that the participation constraint of the
agent is binding, i.e.

(1 − t)R (a,q,Q) −
∑

i∈{1,..,Ma}\D

f i
(
ai
)
− c (q) − T = 0.

2Details are available from the authors.
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However, weak supermodularity is not necessary: (a5) can still hold even when the various non-

contractible actions are strategic substitutes in the revenue function. What is required in this case

is that the interaction effects are not too negative, so that they do not overwhelm the direct positive

effect on net profits of increasing the incentive to invest in any given non-contractible action by raising

the corresponding τ i. Seen in this light, (a5) is a rather mild assumption.

We can then show that the main results from Propositions 1 and 2 in the main paper continue to

hold in this more general setting.

Proposition 1. Suppose assumptions (a1)-(a5) hold and that when
(
θ1, ..., θMa

)
= (1, ..., 1), the

optimal revenue share t∗ is different from 1/2. Then the principal’s optimal contract satisfies the

following properties:

1. If θi is sufficiently close to 1 for all i ∈ {1, ..,Ma}, it is optimal to give control over all Ma

transferable actions to the same party. I.e. there exist
(
ε1, .., εMa

)
∈ (0, 1)Ma such that one of

the pure modes (P-mode or A-mode) is optimal whenever
∣∣θi − 1

∣∣ ≤ εi for all i ∈ {1, ..,Ma}.

2. Suppose
(
θ1, ..., θMa

)
= (1, ..., 1). If the principal optimally sets t∗ < 1/2, then the A-mode

is strictly optimal (i.e. ΠA∗ > ΠP∗); if t∗ > 1/2, then the P-mode is strictly optimal (i.e.

ΠP∗ > ΠA∗).

Proof. Let τ (D, t) be the vector of Ma +Mq +MQ coordinates defined as follows:

τ i (D, t) =

 t if i ∈ D ∪ {Ma +Mq + 1, ..,Ma +Mq +MQ}

1− t if i ∈ ({1, ..,Ma} \D) ∪ {Ma + 1, ..,Ma +Mq} .

Then the profit obtained by the principal is equal to Π (D, τ (D, t)), where Π (D, τ) is defined in

assumption (a5) above.

Suppose first
(
θ1, ..., θMa

)
= (1, ..., 1). Then it is easily seen that Π (D, τ) only depends on

τ , but not on D—we therefore denote it by Π (τ). Denote by t∗ the optimal variable fee and by

(D∗, {1, ..,Ma} \D∗) the optimal allocation of control rights over the transferable actions. Suppose

D∗ 6= Ø and D∗ 6= {1, ..,Ma}. If t∗ < 1 − t∗ (i.e. t∗ < 1/2), then the principal could increase profits

by giving up control over all actions aj for j ∈ D∗ to the agent and keeping t∗ unchanged. To see

this, note that the change in profits is Π (τ (Ø, t∗)) − Π (τ (D∗, t∗)). If t∗ > 0, then (a5) implies this

difference is positive, because 0 < t∗ < 1 − t∗ < 1 and D∗ 6= Ø imply τ (D∗, t∗) ∈ [0, 1)Ma+Mq+MQ ,

τ (Ø, t∗) ∈ [0, 1)Ma+Mq+MQ and τ (Ø, t∗) > τ (D∗, t∗). If t∗ = 0, then the change in profits can be
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written

Π (τ (Ø, 0))−Π (τ (D∗, 0)) = max
a,q

R (a,q,Q = 0)−
∑

i∈{1,...,Ma}

F i
(
ai
)
− c (q)


−

 maxa,q

{
R (a,q,Q = 0)−

∑
i∈{1,...,Ma} F

i
(
ai
)
− c (q)

}
s.t. ai = 0 if i ∈ D∗

 .

In this case, D∗ 6= Ø and (a1)-(a4) imply Π (τ (Ø, 0)) − Π (τ (D∗, 0)) > 0. In particular, this implies

the A-mode is optimal and dominates the P-mode.

By a symmetric argument, if t∗ > 1 − t∗ (i.e. t∗ > 1/2), then the principal could increase profits

by taking control over all actions j ∈ {1, ..,Ma} \D∗ and keeping t∗ unchanged. In particular, this

implies the P-mode is optimal and dominates the A-mode.

Thus, we have proven that, when
(
θ1, ..., θMa

)
= (1, ..., 1), either one of the pure modes, i.e. D∗ = Ø

(i.e. A-mode) or D∗ = {1, ..,Ma} (i.e. P-mode), strictly dominates all other 2Ma − 2 allocations of

control rights, provided t∗ 6= 1/2. By continuity of all profit functions in
(
θ1, ..., θMa

)
, this remains

true when
(
θ1, ..., θMa

)
is in a neighborhood of (1, ..., 1).

2 Optimality of linear contracts

In this section we show that, even with the more general model setup of Section 1, the principal can

achieve the best outcome with linear contracts. I.e., the principal can restrict attention, without loss

of generality, to contracts of the form

Ω (R) = (1− t)R− T,

where T can be interpreted as the fixed fee collected by the principal and t ∈ [0, 1] as the share of

revenue kept by the principal.
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Given an allocation of control rights D ⊂ {1, ..,Ma}, the principal’s optimal contract Ω∗ (.) solves

Π∗ (D) = max
Ω(.),Q,a,q

R (a,q,Q)− Ω (R (a,q,Q))−
∑
i∈D

F i
(
ai
)
−

∑
i∈{1,...,Ma}\D

θiF i
(
ai
)
− C (Q)


s.t.

ai = arg maxa

 R
(
a1, .., ai−1, a, ai+1, .., aMa ,q,Q

)
−Ω

(
R
(
a1, .., ai−1, a, ai+1, .., aMa ,q,Q

))
− F i (a)

 for i ∈ D

ai = arg maxa

{
Ω
(
R
(
a1, .., ai−1, a, ai+1, .., aMa ,q,Q

))
− θiF i (a)

}
for i ∈ {1, ..,Ma} \D

q = arg maxq′ {Ω (R (a,q′,Q))− c (q′)}

Q = arg maxQ′
{
R
(
a,q,Q′

)
− Ω

(
R
(
a,q,Q′

))
− C (Q′)

}
0 ≤ Ω (R (a,q,Q))−

∑
i∈{1,...,Ma}\D θ

iF i
(
ai
)
− c (q) .

Let (a∗,q∗,Q∗) denote the outcome of this optimization problem and define R∗ ≡ R (a∗,q∗,Q∗).

We first prove that Ω∗ (.) must be continuous and differentiable at R∗.

Suppose the optimal allocation of decision rights is D∗ ⊂ {1, ..,Ma}, the proposed optimal contract

Ω∗ offered by the principal is discontinuous at R∗ and limR→R∗− Ω∗ (R) > limR→R∗+ Ω∗ (R). Then

Q∗ = arg max
Q
{R (a∗,q∗,Q)− Ω∗ (R (a∗,q∗,Q))− C (Q)}

implies Ω∗ (R∗) = limR→R∗+ Ω∗ (R), because otherwise Ω∗ (R∗) > limR→R∗+ Ω∗ (R), so the principal

could profitably deviate to, say, Q∗1 + ε, with ε sufficiently small. But then we must have ai = 0

for all i ∈ {1, ..,Ma} \D∗ and q∗ = 0, since otherwise the agent could profitably deviate to ai − ε for

some i ∈ {1, ..,Ma} \D∗ or q∗j − ε for some j ∈ {1, ..,Mq}, with ε sufficiently small. If ai = 0 for

all i ∈ {1, ..,Ma} \D∗ and q∗ = 0, then it must be that Ω∗ (R∗) = 0 and D∗ = {1, ..,Ma} (i.e. pure

P-mode), and therefore

(a∗,Q∗) = arg max
a,Q

{
R (a,0,Q)−

Ma∑
i=1

F i
(
ai
)
− C (Q)

}
. (4)

This also means the principal’s profits are

Π∗ = max
a,Q

{
R (a,0,Q)−

Ma∑
i=1

F i
(
ai
)
− C (Q)

}
.

In this case the principal could keep D∗ = {1, ..,Ma} but switch to the following linear contract

Ωε (R) = εR+ c (q (ε))− εR (a (ε) ,q (ε) ,Q (ε)) ,
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where ε > 0 is sufficiently small and (a (ε) ,q (ε) ,Q (ε)) is a solution to
a (ε) = arg maxa

{
(1− ε)R (a,q (ε) ,Q (ε))−

∑Ma
i=1 F

i
(
ai
)}

q (ε) = arg maxq {εR (a (ε) ,q,Q (ε))− c (q)}

Q (ε) = arg maxQ {(1− ε)R (a (ε) ,q (ε) ,Q)− C (Q)} .

Denote the principal’s profit that results from D∗ = {1, ..,Ma} and contract Ωε by

ΠP (ε) ≡ R (a (ε) ,q (ε) ,Q (ε))−
Ma∑
i=1

F i
(
ai (ε)

)
− c (q (ε))− C (Q (ε)) .

Clearly, (a (0) ,q (0) ,Q (0)) = (a∗,0,Q∗) and ΠP (0) = Π∗. We can then use (4), the definition of

q (ε) and assumption (a2) to obtain

ΠPε (0) =

Ma∑
i=1

(
Rai (a∗,0,Q∗)− F iai

(
a∗i
))
aiε(0) +

Mq∑
j=1

Rqj (a∗,0,Q∗) qjε(0)

+

MQ∑
k=1

(
RQk (a∗,0,Q∗)− CkQk

(
Q∗k

))
Qkε(0)

=

Mq∑
j=1

Rqj (a∗,0,Q∗)2

cj
qjqj

(0)
> 0.

Thus, if limR→R∗− Ω∗ (R) > limR→R∗+ Ω∗ (R), then the principal can keep D∗ = {1, ..,Ma} but prof-

itably deviate to Ωε (R) for ε small enough, which contradicts the optimality of Ω∗ (R).

The other possibility is limR→R∗+ Ω∗ (R) > limR→R∗− Ω∗ (R). Then

q∗ = arg max
q
{Ω∗ (R (a∗,q,Q∗))− c (q)}

implies Ω∗ (R∗) = limR→R∗+ Ω∗ (R), because otherwise Ω∗ (R∗) < limR→R∗+ Ω∗ (R), so the agent could

profitably deviate to, say, q∗1 +ε, with ε sufficiently small. But then we must have ai = 0 for all i ∈ D∗

and Q∗ = 0, otherwise the principal could profitably deviate to ai − ε for some i ∈ D∗ or Q∗k − ε for

some k ∈ {1, ..,MQ}, with ε sufficiently small. This implies D∗ = Ø and thus, the principal’s profits

are at most

Π∗ ≤ R (a∗,q∗,0)−
Ma∑
i=1

θiF i
(
ai∗ (ε)

)
− c (q∗) ≤ max

a,q

{
R (a,q,0)−

Ma∑
i=1

θiF i
(
ai (ε)

)
− c (q)

}
.
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This cannot be optimal. Indeed, the principal could keep D∗ = Ø and switch to the linear contract

Ω̃ε (R) = (1− ε)R+

Ma∑
i=1

θiF i
(
ãi (ε)

)
+ c (q̃ (ε))− (1− ε)R

(
ã (ε) , q̃ (ε) , Q̃ (ε)

)
,

where ε > 0 is sufficiently small and
(
ã (ε) , q̃ (ε) , Q̃ (ε)

)
is a solution to


ã (ε) = arg maxa

{
(1− ε)R

(
a, q̃ (ε) , Q̃ (ε)

)
−
∑Ma

i=1 θ
iF i
(
ai (ε)

)}
q̃ (ε) = arg maxq

{
(1− ε)R

(
ã (ε) ,q, Q̃ (ε)

)
− c (q)

}
Q̃ (ε) = arg maxQ {εR (ã (ε) , q̃ (ε) ,Q)− C (Q)} .

Denote the principal’s profit that results from offering contract Ω̃ε by

Π̃ (ε) ≡ R
(
ã (ε) , q̃ (ε) , Q̃ (ε)

)
−

Ma∑
i=1

θiF i
(
ãi (ε)

)
− c (q̃ (ε))− C

(
Q̃ (ε)

)
.

Clearly,

(
ã (0) , q̃ (0) , Q̃ (0)

)
= (ã∗, q̃∗,0) ≡ arg max

a,q

{
R (a,q,0)−

Ma∑
i=1

θiF i
(
ai
)
− c (q)

}

Π̃ (0) = max
a,q

{
R (a,q,0)−

Ma∑
i=1

θiF i
(
ai
)
− c (q)

}
≥ Π∗.

Using the last inequality, the definitions of ã (ε) and Q̃ (ε) and assumption (a2), we obtain

Π̃ε (0) =

Ma∑
i=1

(
Rai (ã∗, q̃∗,0)− θiF iai

(
ã∗i
))
ãiε (0) +

Mq∑
j=1

(
Rqj (ã∗, q̃∗,0)− cj

qj

(
q̃∗j
))
q̃jε (0)

+

MQ∑
k=1

RQk (ã∗, q̃∗,0) Q̃kε (0)

=

MQ∑
k=1

RQk (ã∗, q̃∗,0)2

Ck
QkQk

(0)
> 0.

Thus, the principal can profitably deviate to Ω̃ε (R) for ε small enough, which contradicts the opti-

mality of Ω∗ (R).

We have thus proven that limR→R∗+ Ω∗ (R) = limR→R∗− Ω∗ (R), so Ω∗ is continuous at R∗.

Suppose now that Ω∗ is non-differentiable at R∗ and limR→R∗+ Ω∗R (R) > limR→R∗− Ω∗R (R). This

implies ai = 0 for all i ∈ {1, ..,Ma} \D∗ and q∗ = 0, otherwise there exist i ∈ {1, ..,Ma} \D∗
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such that ai∗ > 0 and j ∈ {1, ..,Mq} such that q∗j > 0. In this case, setting ai slightly below

a∗i and qj slightly below q∗j would violate a∗i = arg maxa
{

Ω∗
(
R
(
a∗−i (a) ,q∗,Q∗

))
− θiF i (a)

}
and

q∗j = arg maxq

{
Ω∗
(
R
(
a∗,q∗−j (q) ,Q∗

))
− cj (q)

}
, where

a∗−i (a) ≡
(
a∗1, .., a∗(i−1), a,a∗(i+1), .., a∗Ma

)
q∗−j (q) ≡

(
q∗1, .., q∗(j−1), q,q∗(j+1), .., q∗Mq

)
.

Indeed, we would then have

0 ≥ lim
ai→a∗i+

{
Ω∗R
(
R
(
a∗−i (a) ,q∗,Q∗

))
Rai

(
a∗−i (a) ,q∗,Q∗

)
− θiF iai

(
ai
)}

> lim
ai→a∗i−

{
Ω∗R
(
R
(
a∗−i (a) ,q∗,Q∗

))
Rai

(
a∗−i (a) ,q∗,Q∗

)
− θiF iai

(
ai
)}

and

0 ≥ lim
qj→q∗j+

{
Ω∗R
(
R
(
a∗,q∗−j

(
qj
)
,Q∗

))
Rqj

(
a∗,q∗−j

(
qj
)
,Q∗

)
− cj

qj

(
qj
)}

> lim
qj→q∗j−

{
Ω∗R
(
R
(
a∗,q∗−j

(
qj
)
,Q∗

))
Rqj

(
a∗,q∗−j

(
qj
)
,Q∗

)
− cj

qj

(
qj
)}
.

But ai = 0 for all i ∈ {1, ..,Ma} \D∗ and q∗ = 0 implies that we must have Ω∗ (R∗) = 0 (recall

c (0) = F i (0) = 0) and D∗ = {1, ..,Ma}, so

(a∗,Q∗) = arg max
a,Q

{
R (a,0,Q)−

Ma∑
i=1

F i
(
ai
)
− C (Q)

}
.

We can then apply the same reasoning as above to conclude that the principal could profitably deviate

to the linear contract Ωε (R) for ε small enough.

Suppose instead limR→R∗+ Ω∗R (R) < limR→R∗− Ω∗R (R). By a very similar reasoning to the one

above, this implies ai = 0 for all i ∈ D∗ and Q∗ = 0. But Q∗ = 0 implies that

Π∗ ≤ max
a,q
{R (a,q,0)− f (a)− c (q)} .

We can then apply the same reasoning as above to conclude that the principal could profitably deviate

to D = Ø and the linear contract Ω̃ε (R) for ε small enough.

We conclude that Ω∗ (.) must be continuous and differentiable at R∗. This result implies that
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(a∗,q∗,Q∗) solve

(1− Ω∗R (R∗))Rai (a∗,q∗,Q∗) = F i
ai

(
a∗i
)

for i ∈ D

Ω∗R (R∗)Rai (a∗,q∗,Q∗) = θiF i
ai

(
a∗i
)

for i ∈ {1, ..,Ma} \D

Ω∗R (R∗)Rqj (a∗,q∗,Q∗) = cj
qj

(
q∗j
)

for j ∈ {1, ..,Mq}

(1− Ω∗R (R∗))RQk (a∗,q∗,Q∗) = CQk
(
Qk∗

)
for k ∈ {1, ..,MQ} .

Let t∗ ≡ 1−Ω∗R (R∗) and T ∗ ≡ (1− t∗)R∗−Ω∗ (R∗). Clearly, the linear contract Ω̂ (R) = (1− t∗)R−T ∗

can generate the same stage-2 symmetric Nash equilibrium (a∗,q∗,Q∗) as the initial contract Ω∗ (R).

Furthermore, both Ω∗ (R) and Ω̂ (R) cause the agents’ participation constraint to bind and therefore

result in the same profits for the principal.

3 Endogenous price and production costs

We now extend the model with spillovers by allowing the principal to also set a price in the contracting

stage, along with the fees (t, T ), and by also adding a production cost. We will establish the result

stated at the end of Section 5.2 in the main paper, i.e. that Proposition 4 continues to hold in this

case.

The revenue generated by agent i is now

R (p, ai, qi, Q) = (p− c) (D0 + βai + x (a−i − ai) + φqi + ΦQ− p) ,

where c ≥ 0 is a constant marginal production cost, p is the price chosen by the principal and D0 is

some baseline level of demand.

First, we show that whether the production cost is incurred by the principal or the agent does

not affect profits in either mode. In P-mode, if the principal incurs the production cost, then the

10



maximization problem is3

Π̃P∗ = max
p,t,a,q,Q

{
N

(
(p− c) (D0 + βa+ φq + ΦQ− p)− 1

2
a2 − 1

2
q2

)
− 1

2
Q2

}
s.t.

(tp− c)β = a

(1− t)φp = q

(tp− c)NΦ = Q.

If instead the agent incurs the production cost, then the maximization problem is

Π̃P∗ = max
p,t̃,a,q,Q

{
N

(
(p− c) (D0 + βa+ φq + ΦQ− p)− 1

2
a2 − 1

2
q2

)
− 1

2
Q2

}
s.t.

t̃pβ = a((
1− t̃

)
p− c

)
φ = q

t̃pNΦ = Q.

By making the change of variables t̃ ≡ t− c
p , the second maximization problem becomes the same as

the first.

Similarly, in A-mode, if the principal incurs the production cost, then the maximization problem

is

Π̃A∗ = max
p,t,a,q,Q

{
N

(
(p− c) (D0 + βa+ φq + ΦQ− p)− 1

2
a2 − 1

2
q2

)
− 1

2
Q2

}
s.t.

(1− t) p (β − x) = a

(1− t) pΦ = q

(tp− c)NΦ = Q.

3The analysis that follows would be identical if we allowed for spillovers across the choices of prices. These spillovers
would have no impact on the resulting tradeoff because they are internalized in both modes by the principal when it sets
prices in the contracting stage.
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If instead the agent incurs the production cost, then the maximization problem is

Π̃A∗ = max
p,t̃,a,q,Q

{
N

(
(p− c) (D0 + βa+ φq + ΦQ− p)− 1

2
a2 − 1

2
q2

)
− 1

2
Q2

}
s.t.
((

1− t̃
)
p− c

)
(β − x) = a((

1− t̃
)
p− c

)
φ = q

t̃pNΦ = Q.

Again, by making the change of variables t̃ = t − c
p , the second maximization problem becomes the

same as the first. Thus, in our setting it is irrelevant which party actually incurs the production cost.

Solving the program above in P-mode, we obtain

Π̃P∗ = N max
p,t

{
(p− c) (D0 − p) +

β2 +NΦ2

2
(tp− c) ((2− t) p− c) +

φ2

2
p (1− t) (p (1 + t)− 2c)

}
.

Holding p fixed and optimizing over t, we obtain

tP∗ (p) =

(
β2 +NΦ2

)
p+ φ2c

(β2 +NΦ2 + φ2) p
.

Substituting this back into Π̃P∗, the program becomes

Π̃P∗ = max
p

{
N (p− c) (D0 − p) + (p− c)2 ΠP∗

}
,

where ΠP∗ is given by

ΠP∗ =
N

2

(
β2 +NΦ2 +

φ4

β2 + φ2 +NΦ2

)
.

Similarly, solving the program above in A-mode, we have

Π̃A∗ = N max
p,t

 (p− c) (D0 − p) + NΦ2

2 (tp− c) ((2− t) p− c)

+φ2

2 p (1− t) ((1 + t) p− 2c) + 1
2 (1− t) p (β − x) ((β + x+ (β − x) t) p− 2βc)

 .

Holding p fixed and optimizing over t, we obtain

tA∗ (p) =
NΦ2p+ φ2c+ (β − x) (βc− xp)(

NΦ2 + φ2 + (β − x)2
)
p

12



Substituting this back into Π̃A∗, the program becomes (after straightforward calculations)

Π̃A∗ = max
p

{
(p− c) (D0 − p) + (p− c)2 ΠA∗

}
,

where ΠA∗ is given by

ΠA∗ =
N

2

(
β2 − x2 + φ2 +

(
NΦ2 − x (β − x)

)2
(β − x)2 + φ2 +NΦ2

)
.

Comparing the last expressions of Π̃A∗ and Π̃P∗, we can conclude that

Π̃A∗ > Π̃P∗ ⇐⇒ ΠA∗ > ΠP∗ ⇐⇒
∣∣∣∣φ2x

β
+ β2 +NΦ2

∣∣∣∣ ≤√β2 (β2 + φ2 +NΦ2) + φ4,

so the introduction of p and c does not affect the trade-off determined in Proposition 4 in the main

paper.

4 Worker benefits and employees vs. contractors

Fix β = 1, Φ = 0.5, and B = 0.5. We will consider the two numerical examples in turn.

4.1 Example with φ = 1.5 and W0 = 1.5

First consider the case with the correct classification but with a liquidity constraint. In P-mode, we

have

a (t) = βt

q (t) = φ (1− t)

Q (t) = Φt

and the principal chooses t to maximize

t (βa (t) + φq (t) + ΦQ (t))− 1

2
a (t)2 − 1

2
Q (t)2 −B + T

13



s.t.

B + (1− t) (βa (t) + φq (t) + ΦQ (t))− 1

2
q (t)2 − T ≥ W0

T ≤ 0.

Here W0 is the agent’s payoff in the outside option.

Suppose the constraint that T ≤ 0 is not binding. After substituting in T from the other constraint,

this is equivalent to choosing t to maximize

βa (t) + φq (t) + ΦQ (t)− 1

2
a (t)2 − 1

2
q (t)2 − 1

2
Q (t)2 −W0

which implies

tP =
β2 + Φ2

β2 + Φ2 + φ2
< 1.

The principal’s profit in P-mode is

ΠP =
1

2

(
β2 + Φ2 +

φ4

β2 + Φ2 + φ2

)
−W0. (5)

In our example with φ = 1.5 and W0 = 1.5, the principal’s profit in P -mode must therefore be negative.

Now consider A-mode. In A-mode we get that

a (t) = β (1− t)

q (t) = φ (1− t)

Q (t) = Φt

and the principal chooses t to maximize

t (βa (t) + φq (t) + ΦQ (t))− 1

2
Q (t)2 + T

s.t.

(1− t) (βa (t) + φq (t) + ΦQ (t))− 1

2
a (t)2 − 1

2
q (t)2 − T ≥ W0 (6)

T ≤ 0.

Suppose the constraint that T ≤ 0 is not binding. After substituting in T from (6), this is equivalent

14



to choosing t to maximize

βa (t) + φq (t) + ΦQ (t)− 1

2
a (t)2 − 1

2
q (t)2 − 1

2
Q (t)2 −W0,

which implies

tA =
Φ2

β2 + Φ2 + φ2
. (7)

This is always less than tP and less than 1
2 given φ > Φ. The agent gets more of the variable revenue.

The principal’s resulting profit is

ΠA =
1

2

(
β2 + φ2 +

Φ4

β2 + Φ2 + φ2

)
−W0.

This profit is higher than in (5) given that φ > Φ. In our example with φ = 1.5 and W0 = 1.5, we get

ΠA = 0.134. Moreover, solving for T given tA from (6) implies T = −0.082, which means the principal

makes a fixed transfer to the agent to get it to participate.

Now suppose the mode is incorrectly classified, so the principal has to provide the benefit B even

if it allows the agent to choose a. This has no affect on the P-mode profits, which are therefore still

negative. In A-mode, the analysis remains unchanged, except that W0 is replaced by W0 − B and

we also have to subtract B from the principal’s resulting profit. That is, the principal chooses t to

maximize

t (βa (t) + φq (t) + ΦQ (t))− 1

2
Q (t)2 + T −B

s.t.

B + (1− t) (βa (t) + φq (t) + ΦQ (t))− 1

2
a (t)2 − 1

2
q (t)2 − T ≥ W0 (8)

T ≤ 0.

Note that at tA, the highest T that satisfies (8) is now positive (T = 0.418) reflecting that the agent

now gets the additional benefit B and so doesn’t need a positive transfer to be willing to participate.

However, given the liquidity constraint, a positive T is not possible. Therefore, the optimal solution

will involve T = 0.

With T = 0, the principal’s problem in A-mode is to choose t to maximize

t (βa (t) + φq (t) + ΦQ (t))− 1

2
Q (t)2 −B
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s.t.

B + (1− t) (βa (t) + φq (t) + ΦQ (t))− 1

2
a (t)2 − 1

2
q (t)2 ≥W0.

That is, t is set to maximize

t (1− t)
(
β2 + φ2

)
+

1

2
Φ2t2 −B (9)

s.t.
1

2
(1− t)

(
β2 + φ2 +

(
2Φ2 − β2 − φ2

)
t
)
≥W0 −B. (10)

The solution is either tA0 = β2+φ2

2(β2+φ2)−Φ2 , which is between 1
2 and 1 given φ > Φ, provided this ensures

(10) is satisfied, or if not, the value of t solving

1

2
(1− t)

(
β2 + φ2 +

(
2Φ2 − β2 − φ2

)
t
)

= W0 −B,

which we denote tA (W0 −B). For our parameter values, (10) is not satisfied at tA0 , so the principal

does best setting t = tA (Wo −B) = 0.233 and T = 0, such that the agent just wishes to participate.

The principal’s resulting profit is ΠA = 0.088.

4.2 Example with φ = 3 and W0 = 4

Consider first the case that the mode is correctly classified. We can make use of the above general

results.

From (5) we have that ΠP = 0.576. Obviously, this is an upper bound on profits in P-mode since

we ignored the liquidity constraint in obtaining (5). In A-mode, ignoring the liquidity constraint we

have from (7) that tA = 0.024. The agent’s participation constraint (6) implies T = 0.765, which

violates the liquidity constraint. Therefore T = 0 in A-mode. The principal’s problem is given by

(9)-(10) with B = 0. For our parameter values, (10) with B = 0 is not satisfied at tA0 , so the principal

does best setting t = tA (Wo) = 0.108 and T = 0, such that the agent just wishes to participate. The

principal’s profit is given by (9) with B = 0, which implies ΠA = 0.967, so the principal prefers the

A-mode.

Now suppose the mode is incorrectly classified, so the principal has to provide the benefit B even

if it allows the agent to choose a. This reduces the revenue it needs to leave the agent to keep the

agent participating. Since it can’t set a positive fixed fee, it instead increases t. For our parameter

values, (10) is not satisfied at tA0 , so the principal does best setting t = tA (Wo) = 0.168 and T = 0,

such that the agent just wishes to participate. The principal’s resulting profit is given by (9), which

implies ΠA = 0.898.
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5 Price as transferable decision and spillovers

Recall the revenue function

Ri
(
pi, p−i, qi, Q

)
= pi

(
d+ βpi + x

(
p−i − pi

)
+ φqi + ΦQ

)
and the assumptions made on parameters in the main paper:

β < 0, φ > 0, Φ > 0

−2β + min {0, 2x} > max
{
NΦ2, φ2

}
. (11)

The fixed costs of agents’ investment and principal’s investment are quadratic:

c (q) =
1

2
q2, C (Q) =

1

2
Q2.

We want to prove the following proposition (Proposition 6 in the main paper):

Proposition. The principal prefers the A-mode if and only if

−4k (k + β)

k + 2β
< x < 0. (12)

Note that 0 < k < −β so −4k(k+β)
k+2β < 0. Furthermore, the proposition identifies a meaningful

tradeoff since any positive x and any x satisfying (12) also satisfy (11) provided β is sufficiently

negative.

In P-mode, the payoff to agent i from working for the principal is

(1− t)Ri
(
pi, p−i, qi, Q

)
− 1

2
q2
i − T = (1− t) pi

(
d+ βpi + x

(
p−i − pi

)
+ φqi + ΦQ

)
− 1

2
q2
i − T,

which the agent optimizes over qi in the second stage (the fixed fee T is then taken as fixed).

The principal’s payoff in the second stage is

N∑
i=1

(
tpi
(
d+ βpi + x

(
p−i − pi

)
+ φqi + ΦQ

))
− 1

2
Q2,

which the principal optimizes over pi and Q.
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Evaluating the corresponding first-order conditions at the symmetric equilibrium, we have
−2βpP = d+ φqP + ΦQP

qP = (1− t)φpP

QP = tNΦpP .

Solving, we obtain

pP (t) = d
−2β−(1−t)φ2−tNΦ2

qP (t) = d(1−t)
−2β−(1−t)φ2−tNΦ2

QP (t) = dtN
−2β−(1−t)φ2−tNΦ2 .

Note that assumptions (11) ensure pP (t) > 0, qP (t) > 0 and QP (t) > 0.

The fixed fee T is just a transfer that renders each agent indifferent between working for the

principal and their outside option, so the principal’s profit is

ΠP (t) = NpP (t)
(
d+ βpP (t) + φqP (t) + ΦQP (t)

)
−N 1

2
qP (t)2 − 1

2
QP (t)2 .

Plugging in the expressions of pP (t), qP (t) and QP (t) above, we obtain:

ΠP (t) = max
t

Nd
2
(
−2β − (1− t)2 φ2 − t2NΦ2

)
2 (−2β − (1− t)φ2 − tNΦ2)2

 . (13)

In A-mode, agent i joining the principal chooses (pi, qi) to maximize his second stage payoff

(1− t) pi
(
d+ βpi + x

(
p−i − pi

)
+ φqi + ΦQ

)
− 1

2
q2
i ,

while the principal chooses Q to maximize its second stage revenues

N∑
i=1

tpi
(
d+ βpi + x

(
p−i − pi

)
+ φqi + ΦQ

)
− 1

2
Q2.

Evaluating the corresponding first-order conditions at the symmetric equilibrium, we have
(−2β + x) pA = d+ φqA + ΦQA

qA = (1− t)φpA

QA = tNΦpA.

18



Solving, we obtain

pA (t) = d
−2β+x−(1−t)φ2−tNΦ2

qA (t) = d(1−t)
−2β+x−(1−t)φ2−tNΦ2

QA (t) = dtN
−2β+x−(1−t)φ2−tNΦ2 .

Assumptions (11) ensure pA (t) > 0, qA (t) > 0 and QA (t) > 0.

The fixed fee T renders each agent indifferent between joining the principal and his outside option,

so the principal’s profit in A-mode is

ΠA (t) = NpA (t)
(
d+ βpA (t) + φqA (t) + ΦQA (t)

)
−N 1

2
qA (t)2 − 1

2
QA (t)2 .

Plugging in the expressions of pA (t), qA (t) and QA (t) above, we obtain:

ΠA (t) = max
t

Nd
2
(

2 (−β + x)− (1− t)2 φ2 − t2NΦ2
)

2 (−2β + x− (1− t)φ2 − tNΦ2)2

 . (14)

Comparing expressions (13) and (14), ΠP (t) is obtained from ΠA (t) simply by setting x = 0.

Therefore, we will focus on maximizing ΠA (t), from which we can easily derive the maximization of

ΠP (t).

The first-order derivative of ΠA (t) in t is proportional to (with a strictly positive multiplying

factor)

NΦ (−2β + 2x)− φ2x−NΦ2φ2 − t
((
NΦ2 + φ2

)
(−2β + x)− 2NΦ2φ2

)
.

Since
(
NΦ2 + φ2

)
(−2β + x) − 2NΦ2φ2 > 0 under assumptions (11), we obtain that the optimal

variable fee under the A-mode is

tA∗ =



0 if NΦ2 (−2β + 2x)− φ2x−NΦ2φ2 ≤ 0

NΦ2(−2β+2x)−φ2x−NΦ2φ2

(NΦ2+φ2)(−2β+x)−2NΦ2φ2

if 0 ≤ NΦ2 (−2β + 2x)− φ2x−NΦ2φ2

≤
(
NΦ2 + φ2

)
(−2β + x)− 2NΦ2φ2

1
if NΦ2 (−2β + 2x)− φ2x−NΦ2φ2

≥
(
NΦ2 + φ2

)
(−2β + x)− 2NΦ2φ2.
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Rewriting the conditions:

tA∗ =



0 if x
(
φ2 − 2NΦ2

)
≥ NΦ2

(
−2β − φ2

)
NΦ2(−2β+2x)−φ2x−NΦ2φ2

(NΦ2+φ2)(−2β+x)−2NΦ2φ2

if x
(
φ2 − 2NΦ2

)
≤ NΦ2

(
−2β − φ2

)
and x

(
NΦ2 − 2φ2

)
≤ φ2

(
−2β −NΦ2

)
1 if x

(
NΦ2 − 2φ2

)
≥ φ2

(
−2β −NΦ2

)
.

Suppose x is such that 0 < tA∗ < 1. Then the first-order condition of ΠA (t) in t evaluated at tA∗

implies:

((
1− tA∗

)
φ2 − tA∗NΦ2

) −2β + x−
(
1− tA∗

)
φ2

−tA∗NΦ2

 =
(
φ2 −NΦ2

) 2 (−β + x)−
(
1− tA∗

)2
φ2

−
(
tA∗
)2
NΦ2

 ,

from which we can deduce:

ΠA =
Nd2

(
2 (−β + x)−

(
1− tA∗

)2
φ2 −

(
tA∗
)2
NΦ2

)
2 (−2β + x− (1− tA∗)φ2 − tA∗NΦ2)2

=
Nd2

((
1− tA∗

)
φ2 − tA∗NΦ2

)
2 (φ2 −NΦ2) (−2β + x− (1− tA∗)φ2 − tA∗NΦ2)

=
Nd2

2 (φ2 −NΦ2)

φ2 − tA∗
(
NΦ2 + φ2

)
−2β + x− φ2 + tA∗ (φ2 −NΦ2)

.

Plugging tA∗ = NΦ2(−2β+2x)−φ2x−NΦ2φ2

(NΦ2+φ2)(−2β+x)−2NΦ2φ2 into the last expression, we obtain

ΠA∗ =
Nd2

2

(−2β + 2x)
(
NΦ2 + φ2

)
−NΦ2φ2

(NΦ2 + φ2) (−2β −NΦ2 + x) (−2β − φ2 + x)− x (NΦ2 − φ2)2 .

From here, we can set x = 0 to obtain

tP∗ =

(
−2β − φ2

)
NΦ2

−2β (NΦ2 + φ2)− 2NΦ2φ2
∈ (0, 1)

ΠP∗ =
Nd2

2

−2β
(
NΦ2 + φ2

)
−NΦ2φ2

(NΦ2 + φ2) (−2β −NΦ2) (−2β − φ2)
.
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The complete characterization of profits in A-mode is:

ΠA∗ =



Nd2

2
2(−β+x)−φ2

(−2β+x−φ2)2 if x
(
φ2 − 2NΦ2

)
≥ NΦ2

(
−2β − φ2

)
Nd2

2

(−2β+2x)(NΦ2+φ2)−NΦ2φ2

(NΦ2+φ2)(−2β−NΦ2+x)(−2β−φ2+x)−x(NΦ2−φ2)2

if x
(
φ2 − 2NΦ2

)
≤ NΦ2

(
−2β − φ2

)
and x

(
NΦ2 − 2φ2

)
≤ φ2

(
−2β −NΦ2

)
Nd2

2
2(−β+x)−NΦ2

(−2β+x−NΦ2)2 if x
(
NΦ2 − 2φ2

)
≥ φ2

(
−2β −NΦ2

)
.

Suppose x
(
φ2 − 2NΦ2

)
≤ NΦ2

(
−2β − φ2

)
and x

(
NΦ2 − 2φ2

)
≤ φ2

(
−2β −NΦ2

)
, so that 0 <

tA∗ < 1. We have ΠA > ΠP if and only if

(−2β + 2x)
(
NΦ2 + φ2

)
−NΦ2φ2

(NΦ2 + φ2) (−2β −NΦ2 + x) (−2β − φ2 + x)− x (NΦ2 − φ2)2 >
−2β

(
NΦ2 + φ2

)
−NΦ2φ2

(NΦ2 + φ2) (−2β −NΦ2) (−2β − φ2)
,

which is equivalent to

(
(−2β + 2x)

(
NΦ2 + φ2

)
−NΦ2φ2

) (
NΦ2 + φ2

) (
−2β −NΦ2

) (
−2β − φ2

)
>

(
−2β

(
NΦ2 + φ2

)
−NΦ2φ2

) ((
NΦ2 + φ2

) (
−2β −NΦ2 + x

) (
−2β − φ2 + x

)
− x

(
NΦ2 − φ2

)2)
.

Recall the two sides are equal for x = 0, therefore we can eliminate all terms that are not factored by

x or x2, so the inequality reduces to

2x
(
NΦ2 + φ2

)2 (−2β −NΦ2
) (
−2β − φ2

)
>

(
−2β

(
NΦ2 + φ2

)
−NΦ2φ2

) (
−x
(
NΦ2 − φ2

)2
+ x

(
NΦ2 + φ2

) (
−4β −

(
NΦ2 + φ2

))
+ x2

(
NΦ2 + φ2

))
.

Rearranging, this can be rewritten

0 > −x

 (
−2β

(
NΦ2 + φ2

)
−NΦ2φ2

) (
2
(
N2Φ4 + φ4

)
+ 4β

(
NΦ2 + φ2

))
+2
(
NΦ2 + φ2

)2 (−2β −NΦ2
) (
−2β − φ2

)
+

+x2
(
−2β

(
NΦ2 + φ2

)
−NΦ2φ2

) (
NΦ2 + φ2

)
.

Simplifying, this leads to

0 > −2xNΦ2φ2
(
2β
(
NΦ2 + φ2

)
+ 2NΦ2φ2

)
+ x2

(
−2β

(
NΦ2 + φ2

)
−NΦ2φ2

) (
NΦ2 + φ2

)
,
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from which we conclude

ΠA∗ > ΠP∗ ⇐⇒ x

(
2NΦ2φ2

(
−2β

(
NΦ2 + φ2

)
− 2NΦ2φ2

)
(−2β (NΦ2 + φ2)−NΦ2φ2) (NΦ2 + φ2)

+ x

)
< 0.

Both the numerator and the denominator of the large fraction are positive under assumptions (11).

We conclude that when 0 < tA∗ < 1:

ΠA∗ > ΠP∗ ⇐⇒ −
2NΦ2φ2

(
−2β

(
NΦ2 + φ2

)
− 2NΦ2φ2

)
(−2β (NΦ2 + φ2)−NΦ2φ2) (NΦ2 + φ2)

< x < 0

⇐⇒ −
4 NΦ2φ2

NΦ2+φ2

(
β + NΦ2φ2

NΦ2+φ2

)
2β + NΦ2φ2

NΦ2+φ2

< x < 0

It remains to consider the cases x
(
φ2 − 2NΦ2

)
≥ NΦ2

(
−2β − φ2

)
(in which tA∗ = 0) and

x
(
NΦ2 − 2φ2

)
≥ φ2

(
−2β −NΦ2

)
(in which tA∗ = 1). It is easier to consider the following three

cases in turn.

Case I: φ2 > 2NΦ2.

In this case, it is easily verified that assumptions (11) imply x
(
NΦ2 − 2φ2

)
≤ φ2

(
−2β −NΦ2

)
.

Therefore we have:

ΠA∗ =


Nd2

2
2(−β+x)−φ2

(−2β+x−φ2)2 if x ≥ NΦ2(−2β−φ2)
φ2−2NΦ2

Nd2

2

(−2β+2x)(NΦ2+φ2)−NΦ2φ2

(NΦ2+φ2)(−2β−NΦ2+x)(−2β−φ2+x)−x(NΦ2−φ2)2 if
NΦ2(−2β−φ2)
φ2−2NΦ2 ≥ x ≥ −−2β−max{φ2,NΦ2}

2 .

The expression 2(−β+x)−φ2

(−2β+x−φ2)2 is increasing in x for x ≤ 0 and decreasing in x for x ≥ 0, therefore

the maximum value attained by ΠA when x ≥ NΦ2(−2β−φ2)
φ2−2NΦ2 is precisely when x =

NΦ2(−2β−φ2)
φ2−2NΦ2 . That

value is:

ΠA∗

(
x =

NΦ2
(
−2β − φ2

)
φ2 − 2NΦ2

)
=

Nd2

2

φ2
(
φ2 − 2NΦ2

)
(−2β − φ2) (φ2 −NΦ2)2

<
Nd2

2

(−2β)
(
NΦ2 + φ2

)
−NΦ2φ2

(NΦ2 + φ2) (−2β −NΦ2) (−2β − φ2)
= ΠP∗,

where the inequality is straightforward to verify under assumptions (11). Thus, ΠP∗ dominates ΠA∗

for all x ≥ NΦ2(−2β−φ2)
φ2−2NΦ2 . Combining with the result above, we conclude that ΠP∗ dominates ΠA∗ for
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all x ≥ 0 and x ≤ −
4 NΦ2φ2

NΦ2+φ2

(
β+ NΦ2φ2

NΦ2+φ2

)
2β+ NΦ2φ2

NΦ2+φ2

, whereas ΠA∗ dominates ΠP∗ for all permissible x such that

−
4 NΦ2φ2

NΦ2+φ2

(
β + NΦ2φ2

NΦ2+φ2

)
2β + NΦ2φ2

NΦ2+φ2

≤ x ≤ 0.

Case II: NΦ2 > 2φ2.

In this case, it is easily verified that assumptions (11) imply x
(
φ2 − 2NΦ2

)
≤ NΦ2

(
−2β − φ2

)
.

Therefore we have:

ΠA∗ =


Nd2

2
2(−β+x)−NΦ2

(−2β+x−NΦ2)2 if x ≥ φ2(−2β−NΦ2)
NΦ2−2φ2

Nd2

2

(−2β+2x)(NΦ2+φ2)−NΦ2φ2

(NΦ2+φ2)(−2β−NΦ2+x)(−2β−φ2+x)−x(NΦ2−φ2)2 if
φ2(−2β−NΦ2)
NΦ2−2φ2 ≥ x ≥ −−2β−max{φ2,NΦ2}

2 .

The analysis is exactly the same as in Case I above (by symmetry in φ2 and NΦ2), therefore the

conclusion is exactly the same for this case as well.

Case III: φ2 ≤ 2NΦ2 and NΦ2 ≤ 2φ2.

In this case, it is easily verified that assumptions (11) imply x
(
NΦ2 − 2φ2

)
≤ φ2

(
−2β −NΦ2

)
and x

(
φ2 − 2NΦ2

)
≤ NΦ2

(
−2β − φ2

)
for all permissible x. Therefore we have:

ΠA∗ =
Nd2

2

(−2β + 2x)
(
NΦ2 + φ2

)
−NΦ2φ2

(NΦ2 + φ2) (−2β −NΦ2 + x) (−2β − φ2 + x)− x (NΦ2 − φ2)2

for all permissible x, so we already know that

ΠA∗ > ΠP∗ ⇐⇒ −
4 NΦ2φ2

NΦ2+φ2

(
β + NΦ2φ2

NΦ2+φ2

)
2β + NΦ2φ2

NΦ2+φ2

< x < 0.
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